|
a |
|
b/src/preprocess/02_event_static.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"id": "bf6469fe", |
|
|
6 |
"metadata": {}, |
|
|
7 |
"source": [ |
|
|
8 |
"import os\n", |
|
|
9 |
"import sys\n", |
|
|
10 |
"\n", |
|
|
11 |
"src_path = os.path.abspath('../..')\n", |
|
|
12 |
"print(src_path)\n", |
|
|
13 |
"sys.path.append(src_path)" |
|
|
14 |
], |
|
|
15 |
"outputs": [], |
|
|
16 |
"execution_count": null |
|
|
17 |
}, |
|
|
18 |
{ |
|
|
19 |
"cell_type": "code", |
|
|
20 |
"id": "fcd74d2c", |
|
|
21 |
"metadata": {}, |
|
|
22 |
"source": [ |
|
|
23 |
"from src.utils import create_directory, raw_data_path, processed_data_path, set_seed" |
|
|
24 |
], |
|
|
25 |
"outputs": [], |
|
|
26 |
"execution_count": null |
|
|
27 |
}, |
|
|
28 |
{ |
|
|
29 |
"cell_type": "code", |
|
|
30 |
"id": "4cae42b3", |
|
|
31 |
"metadata": {}, |
|
|
32 |
"source": [ |
|
|
33 |
"set_seed(seed=42)" |
|
|
34 |
], |
|
|
35 |
"outputs": [], |
|
|
36 |
"execution_count": null |
|
|
37 |
}, |
|
|
38 |
{ |
|
|
39 |
"cell_type": "code", |
|
|
40 |
"id": "57e86fc8", |
|
|
41 |
"metadata": {}, |
|
|
42 |
"source": [ |
|
|
43 |
"import pandas as pd" |
|
|
44 |
], |
|
|
45 |
"outputs": [], |
|
|
46 |
"execution_count": null |
|
|
47 |
}, |
|
|
48 |
{ |
|
|
49 |
"cell_type": "code", |
|
|
50 |
"id": "d5a4a2f7", |
|
|
51 |
"metadata": {}, |
|
|
52 |
"source": [ |
|
|
53 |
"mimic_iv_path = os.path.join(raw_data_path, \"physionet.org/files/mimiciv/2.2\")\n", |
|
|
54 |
"mimic_iv_note_path = os.path.join(raw_data_path, \"physionet.org/files/mimic-iv-note/2.2\")\n", |
|
|
55 |
"output_path = os.path.join(processed_data_path, \"mimic4\")" |
|
|
56 |
], |
|
|
57 |
"outputs": [], |
|
|
58 |
"execution_count": null |
|
|
59 |
}, |
|
|
60 |
{ |
|
|
61 |
"cell_type": "code", |
|
|
62 |
"id": "3d241540", |
|
|
63 |
"metadata": {}, |
|
|
64 |
"source": [ |
|
|
65 |
"cohort = pd.read_csv(os.path.join(output_path, \"cohort.csv\"))\n", |
|
|
66 |
"print(cohort.shape)\n", |
|
|
67 |
"cohort.head()" |
|
|
68 |
], |
|
|
69 |
"outputs": [], |
|
|
70 |
"execution_count": null |
|
|
71 |
}, |
|
|
72 |
{ |
|
|
73 |
"cell_type": "code", |
|
|
74 |
"id": "00486178", |
|
|
75 |
"metadata": {}, |
|
|
76 |
"source": [ |
|
|
77 |
"cohort[\"hadm_intime\"] = pd.to_datetime(cohort[\"hadm_intime\"])\n", |
|
|
78 |
"cohort[\"hadm_outtime\"] = pd.to_datetime(cohort[\"hadm_outtime\"])\n", |
|
|
79 |
"cohort[\"stay_intime\"] = pd.to_datetime(cohort[\"stay_intime\"])\n", |
|
|
80 |
"cohort[\"stay_outtime\"] = pd.to_datetime(cohort[\"stay_outtime\"])" |
|
|
81 |
], |
|
|
82 |
"outputs": [], |
|
|
83 |
"execution_count": null |
|
|
84 |
}, |
|
|
85 |
{ |
|
|
86 |
"cell_type": "code", |
|
|
87 |
"id": "64cc5546", |
|
|
88 |
"metadata": {}, |
|
|
89 |
"source": [ |
|
|
90 |
"hadm_ids = set(cohort.hadm_id.unique().tolist())\n", |
|
|
91 |
"len(hadm_ids)" |
|
|
92 |
], |
|
|
93 |
"outputs": [], |
|
|
94 |
"execution_count": null |
|
|
95 |
}, |
|
|
96 |
{ |
|
|
97 |
"cell_type": "markdown", |
|
|
98 |
"id": "4774f5d5", |
|
|
99 |
"metadata": {}, |
|
|
100 |
"source": [ |
|
|
101 |
"helper" |
|
|
102 |
] |
|
|
103 |
}, |
|
|
104 |
{ |
|
|
105 |
"cell_type": "code", |
|
|
106 |
"id": "ff882410", |
|
|
107 |
"metadata": {}, |
|
|
108 |
"source": [ |
|
|
109 |
"from concurrent.futures import ThreadPoolExecutor\n", |
|
|
110 |
"from tqdm import tqdm\n", |
|
|
111 |
"from pandarallel import pandarallel" |
|
|
112 |
], |
|
|
113 |
"outputs": [], |
|
|
114 |
"execution_count": null |
|
|
115 |
}, |
|
|
116 |
{ |
|
|
117 |
"cell_type": "code", |
|
|
118 |
"id": "f841dfbb", |
|
|
119 |
"metadata": {}, |
|
|
120 |
"source": [ |
|
|
121 |
"pandarallel.initialize(progress_bar=True)" |
|
|
122 |
], |
|
|
123 |
"outputs": [], |
|
|
124 |
"execution_count": null |
|
|
125 |
}, |
|
|
126 |
{ |
|
|
127 |
"cell_type": "code", |
|
|
128 |
"id": "65b989bc", |
|
|
129 |
"metadata": {}, |
|
|
130 |
"source": [ |
|
|
131 |
"def save_group(group_df, hadm_id, event_type):\n", |
|
|
132 |
" file_path = f\"{output_path}/event_{event_type}/event_{int(hadm_id)}.csv\"\n", |
|
|
133 |
" group_df.to_csv(file_path, index=False)\n", |
|
|
134 |
" return True" |
|
|
135 |
], |
|
|
136 |
"outputs": [], |
|
|
137 |
"execution_count": null |
|
|
138 |
}, |
|
|
139 |
{ |
|
|
140 |
"cell_type": "markdown", |
|
|
141 |
"id": "29ca0184", |
|
|
142 |
"metadata": {}, |
|
|
143 |
"source": [ |
|
|
144 |
"## patients" |
|
|
145 |
] |
|
|
146 |
}, |
|
|
147 |
{ |
|
|
148 |
"cell_type": "code", |
|
|
149 |
"id": "ce3d37a4", |
|
|
150 |
"metadata": {}, |
|
|
151 |
"source": [ |
|
|
152 |
"patients = pd.read_csv(os.path.join(mimic_iv_path, \"hosp/patients.csv.gz\"))\n", |
|
|
153 |
"print(patients.shape)\n", |
|
|
154 |
"patients.head()" |
|
|
155 |
], |
|
|
156 |
"outputs": [], |
|
|
157 |
"execution_count": null |
|
|
158 |
}, |
|
|
159 |
{ |
|
|
160 |
"cell_type": "code", |
|
|
161 |
"id": "96e9a2d4", |
|
|
162 |
"metadata": {}, |
|
|
163 |
"source": [ |
|
|
164 |
"cohort = cohort.merge(patients[[\"subject_id\", \"gender\", \"anchor_age\", \"anchor_year\"]], on=\"subject_id\", how=\"inner\")\n", |
|
|
165 |
"cohort[\"age\"] = cohort.hadm_intime.dt.year - cohort.anchor_year + cohort.anchor_age\n", |
|
|
166 |
"print(cohort.shape)\n", |
|
|
167 |
"cohort.head()" |
|
|
168 |
], |
|
|
169 |
"outputs": [], |
|
|
170 |
"execution_count": null |
|
|
171 |
}, |
|
|
172 |
{ |
|
|
173 |
"cell_type": "code", |
|
|
174 |
"id": "7e56a347", |
|
|
175 |
"metadata": {}, |
|
|
176 |
"source": [ |
|
|
177 |
"print(cohort.age.min())\n", |
|
|
178 |
"print(cohort.age.max())\n", |
|
|
179 |
"print(cohort.age.mean())\n", |
|
|
180 |
"print(cohort.age.std())" |
|
|
181 |
], |
|
|
182 |
"outputs": [], |
|
|
183 |
"execution_count": null |
|
|
184 |
}, |
|
|
185 |
{ |
|
|
186 |
"cell_type": "code", |
|
|
187 |
"id": "a3dc3f7d", |
|
|
188 |
"metadata": {}, |
|
|
189 |
"source": [ |
|
|
190 |
"cohort.gender.value_counts()" |
|
|
191 |
], |
|
|
192 |
"outputs": [], |
|
|
193 |
"execution_count": null |
|
|
194 |
}, |
|
|
195 |
{ |
|
|
196 |
"cell_type": "markdown", |
|
|
197 |
"id": "685091a4", |
|
|
198 |
"metadata": {}, |
|
|
199 |
"source": [ |
|
|
200 |
"## admissions" |
|
|
201 |
] |
|
|
202 |
}, |
|
|
203 |
{ |
|
|
204 |
"cell_type": "code", |
|
|
205 |
"id": "20da413d", |
|
|
206 |
"metadata": {}, |
|
|
207 |
"source": [ |
|
|
208 |
"admissions = pd.read_csv(os.path.join(mimic_iv_path, \"hosp/admissions.csv.gz\"))\n", |
|
|
209 |
"print(admissions.shape)\n", |
|
|
210 |
"admissions.head()" |
|
|
211 |
], |
|
|
212 |
"outputs": [], |
|
|
213 |
"execution_count": null |
|
|
214 |
}, |
|
|
215 |
{ |
|
|
216 |
"cell_type": "code", |
|
|
217 |
"id": "e5796ed0", |
|
|
218 |
"metadata": {}, |
|
|
219 |
"source": [ |
|
|
220 |
"cohort = cohort.merge(admissions[[\"subject_id\", \"hadm_id\", \"admission_type\", \"admission_location\", \"insurance\", \"language\", \"marital_status\", \"race\"]], on=[\"subject_id\", \"hadm_id\"], how=\"inner\")\n", |
|
|
221 |
"print(cohort.shape)\n", |
|
|
222 |
"cohort.head()" |
|
|
223 |
], |
|
|
224 |
"outputs": [], |
|
|
225 |
"execution_count": null |
|
|
226 |
}, |
|
|
227 |
{ |
|
|
228 |
"cell_type": "markdown", |
|
|
229 |
"id": "3b1486b0", |
|
|
230 |
"metadata": {}, |
|
|
231 |
"source": [ |
|
|
232 |
"## discharge" |
|
|
233 |
] |
|
|
234 |
}, |
|
|
235 |
{ |
|
|
236 |
"cell_type": "code", |
|
|
237 |
"id": "f3c47a56", |
|
|
238 |
"metadata": {}, |
|
|
239 |
"source": [ |
|
|
240 |
"discharge = pd.read_csv(os.path.join(mimic_iv_note_path, \"note/discharge.csv.gz\"))\n", |
|
|
241 |
"print(discharge.shape)\n", |
|
|
242 |
"discharge.head()" |
|
|
243 |
], |
|
|
244 |
"outputs": [], |
|
|
245 |
"execution_count": null |
|
|
246 |
}, |
|
|
247 |
{ |
|
|
248 |
"cell_type": "code", |
|
|
249 |
"id": "695c5b5a", |
|
|
250 |
"metadata": {}, |
|
|
251 |
"source": [ |
|
|
252 |
"import re\n", |
|
|
253 |
"\n", |
|
|
254 |
"def extract_chief_complaint(discharge_summary):\n", |
|
|
255 |
" # Define the regex pattern to capture the Chief Complaint text\n", |
|
|
256 |
" # The pattern looks for the literal string \"Chief Complaint:\" followed by any characters until the first newline\n", |
|
|
257 |
" pattern = r\"(Chief Complaint|___ Complaint):\\s*(.+?)\\s*\\n\"\n", |
|
|
258 |
" \n", |
|
|
259 |
" # Search for the pattern in the discharge summary\n", |
|
|
260 |
" match = re.search(pattern, discharge_summary)\n", |
|
|
261 |
" \n", |
|
|
262 |
" # If a match is found, return the captured group; otherwise, return None\n", |
|
|
263 |
" if match:\n", |
|
|
264 |
" return match.group(2).strip() # Use strip to remove any extra whitespace\n", |
|
|
265 |
" else:\n", |
|
|
266 |
" return None" |
|
|
267 |
], |
|
|
268 |
"outputs": [], |
|
|
269 |
"execution_count": null |
|
|
270 |
}, |
|
|
271 |
{ |
|
|
272 |
"cell_type": "code", |
|
|
273 |
"id": "9aa30a39", |
|
|
274 |
"metadata": {}, |
|
|
275 |
"source": [ |
|
|
276 |
"extract_chief_complaint(discharge.iloc[42332].text)" |
|
|
277 |
], |
|
|
278 |
"outputs": [], |
|
|
279 |
"execution_count": null |
|
|
280 |
}, |
|
|
281 |
{ |
|
|
282 |
"cell_type": "code", |
|
|
283 |
"id": "7f32adac", |
|
|
284 |
"metadata": {}, |
|
|
285 |
"source": [ |
|
|
286 |
"extract_chief_complaint(discharge.iloc[4332].text)" |
|
|
287 |
], |
|
|
288 |
"outputs": [], |
|
|
289 |
"execution_count": null |
|
|
290 |
}, |
|
|
291 |
{ |
|
|
292 |
"cell_type": "code", |
|
|
293 |
"id": "8339a776", |
|
|
294 |
"metadata": {}, |
|
|
295 |
"source": [ |
|
|
296 |
"discharge[\"chief_complaint\"] = discharge.text.parallel_apply(extract_chief_complaint)" |
|
|
297 |
], |
|
|
298 |
"outputs": [], |
|
|
299 |
"execution_count": null |
|
|
300 |
}, |
|
|
301 |
{ |
|
|
302 |
"cell_type": "code", |
|
|
303 |
"id": "bb36888f", |
|
|
304 |
"metadata": {}, |
|
|
305 |
"source": [ |
|
|
306 |
"discharge.head()" |
|
|
307 |
], |
|
|
308 |
"outputs": [], |
|
|
309 |
"execution_count": null |
|
|
310 |
}, |
|
|
311 |
{ |
|
|
312 |
"cell_type": "code", |
|
|
313 |
"id": "c251a181", |
|
|
314 |
"metadata": {}, |
|
|
315 |
"source": [ |
|
|
316 |
"discharge.isna().sum()" |
|
|
317 |
], |
|
|
318 |
"outputs": [], |
|
|
319 |
"execution_count": null |
|
|
320 |
}, |
|
|
321 |
{ |
|
|
322 |
"cell_type": "code", |
|
|
323 |
"id": "88ceedbd", |
|
|
324 |
"metadata": {}, |
|
|
325 |
"source": [ |
|
|
326 |
"cohort = cohort.merge(discharge[[\"subject_id\", \"hadm_id\", \"chief_complaint\"]], on=[\"subject_id\", \"hadm_id\"], how=\"inner\")\n", |
|
|
327 |
"print(cohort.shape)\n", |
|
|
328 |
"cohort.head()" |
|
|
329 |
], |
|
|
330 |
"outputs": [], |
|
|
331 |
"execution_count": null |
|
|
332 |
}, |
|
|
333 |
{ |
|
|
334 |
"cell_type": "markdown", |
|
|
335 |
"id": "2f2eefa1", |
|
|
336 |
"metadata": {}, |
|
|
337 |
"source": [ |
|
|
338 |
"## post-process" |
|
|
339 |
] |
|
|
340 |
}, |
|
|
341 |
{ |
|
|
342 |
"cell_type": "code", |
|
|
343 |
"id": "6f504122", |
|
|
344 |
"metadata": {}, |
|
|
345 |
"source": [ |
|
|
346 |
"cohort = cohort.drop(columns=[\"anchor_age\", \"anchor_year\"])\n", |
|
|
347 |
"cohort.head()" |
|
|
348 |
], |
|
|
349 |
"outputs": [], |
|
|
350 |
"execution_count": null |
|
|
351 |
}, |
|
|
352 |
{ |
|
|
353 |
"cell_type": "code", |
|
|
354 |
"id": "048fdb57", |
|
|
355 |
"metadata": {}, |
|
|
356 |
"source": [ |
|
|
357 |
"cohort.isna().sum()" |
|
|
358 |
], |
|
|
359 |
"outputs": [], |
|
|
360 |
"execution_count": null |
|
|
361 |
}, |
|
|
362 |
{ |
|
|
363 |
"cell_type": "code", |
|
|
364 |
"id": "192fb0a1", |
|
|
365 |
"metadata": {}, |
|
|
366 |
"source": [ |
|
|
367 |
"cohort.admission_type.unique()" |
|
|
368 |
], |
|
|
369 |
"outputs": [], |
|
|
370 |
"execution_count": null |
|
|
371 |
}, |
|
|
372 |
{ |
|
|
373 |
"cell_type": "code", |
|
|
374 |
"id": "fd7ea73b", |
|
|
375 |
"metadata": {}, |
|
|
376 |
"source": [ |
|
|
377 |
"cohort.admission_location.unique()" |
|
|
378 |
], |
|
|
379 |
"outputs": [], |
|
|
380 |
"execution_count": null |
|
|
381 |
}, |
|
|
382 |
{ |
|
|
383 |
"cell_type": "code", |
|
|
384 |
"id": "2ef33de0", |
|
|
385 |
"metadata": {}, |
|
|
386 |
"source": [ |
|
|
387 |
"cohort.insurance.unique()" |
|
|
388 |
], |
|
|
389 |
"outputs": [], |
|
|
390 |
"execution_count": null |
|
|
391 |
}, |
|
|
392 |
{ |
|
|
393 |
"cell_type": "code", |
|
|
394 |
"id": "01d704cc", |
|
|
395 |
"metadata": {}, |
|
|
396 |
"source": [ |
|
|
397 |
"cohort.language.unique()" |
|
|
398 |
], |
|
|
399 |
"outputs": [], |
|
|
400 |
"execution_count": null |
|
|
401 |
}, |
|
|
402 |
{ |
|
|
403 |
"cell_type": "code", |
|
|
404 |
"id": "85d70f6f", |
|
|
405 |
"metadata": {}, |
|
|
406 |
"source": [ |
|
|
407 |
"cohort.marital_status.unique()" |
|
|
408 |
], |
|
|
409 |
"outputs": [], |
|
|
410 |
"execution_count": null |
|
|
411 |
}, |
|
|
412 |
{ |
|
|
413 |
"cell_type": "code", |
|
|
414 |
"id": "4a4047f3", |
|
|
415 |
"metadata": {}, |
|
|
416 |
"source": [ |
|
|
417 |
"cohort.race.unique()" |
|
|
418 |
], |
|
|
419 |
"outputs": [], |
|
|
420 |
"execution_count": null |
|
|
421 |
}, |
|
|
422 |
{ |
|
|
423 |
"cell_type": "code", |
|
|
424 |
"id": "de006e4c", |
|
|
425 |
"metadata": {}, |
|
|
426 |
"source": "event_type = \"patient_demographics\"", |
|
|
427 |
"outputs": [], |
|
|
428 |
"execution_count": null |
|
|
429 |
}, |
|
|
430 |
{ |
|
|
431 |
"cell_type": "code", |
|
|
432 |
"id": "41fa6397", |
|
|
433 |
"metadata": {}, |
|
|
434 |
"source": [ |
|
|
435 |
"def generate_event_value(x):\n", |
|
|
436 |
" s = f\"gender: {x.gender}, age: {x.age}, race: {x.race}\"\n", |
|
|
437 |
" if not pd.isna(x.marital_status):\n", |
|
|
438 |
" s += f\", marital status: {x.marital_status}\"\n", |
|
|
439 |
" s += f\", insurance: {x.insurance}\"\n", |
|
|
440 |
" return s" |
|
|
441 |
], |
|
|
442 |
"outputs": [], |
|
|
443 |
"execution_count": null |
|
|
444 |
}, |
|
|
445 |
{ |
|
|
446 |
"cell_type": "code", |
|
|
447 |
"id": "3d53e74e", |
|
|
448 |
"metadata": {}, |
|
|
449 |
"source": [ |
|
|
450 |
"meta_cols = [\"gender\", \"age\", \"race\", \"marital_status\", \"insurance\"]\n", |
|
|
451 |
"for c in meta_cols:\n", |
|
|
452 |
" cohort[\"meta_\" + c] = cohort[c]\n", |
|
|
453 |
"meta_cols = [\"meta_\" + c for c in meta_cols]" |
|
|
454 |
], |
|
|
455 |
"outputs": [], |
|
|
456 |
"execution_count": null |
|
|
457 |
}, |
|
|
458 |
{ |
|
|
459 |
"cell_type": "code", |
|
|
460 |
"id": "1cf76546", |
|
|
461 |
"metadata": {}, |
|
|
462 |
"source": [ |
|
|
463 |
"cohort[\"timestamp\"] = 0\n", |
|
|
464 |
"cohort[\"timestamp_avail\"] = 0" |
|
|
465 |
], |
|
|
466 |
"outputs": [], |
|
|
467 |
"execution_count": null |
|
|
468 |
}, |
|
|
469 |
{ |
|
|
470 |
"cell_type": "code", |
|
|
471 |
"id": "88c506ec", |
|
|
472 |
"metadata": {}, |
|
|
473 |
"source": [ |
|
|
474 |
"print(generate_event_value(cohort.iloc[5]))" |
|
|
475 |
], |
|
|
476 |
"outputs": [], |
|
|
477 |
"execution_count": null |
|
|
478 |
}, |
|
|
479 |
{ |
|
|
480 |
"cell_type": "code", |
|
|
481 |
"id": "eba10521", |
|
|
482 |
"metadata": {}, |
|
|
483 |
"source": [ |
|
|
484 |
"print(generate_event_value(cohort.iloc[520]))" |
|
|
485 |
], |
|
|
486 |
"outputs": [], |
|
|
487 |
"execution_count": null |
|
|
488 |
}, |
|
|
489 |
{ |
|
|
490 |
"cell_type": "code", |
|
|
491 |
"id": "5d832292", |
|
|
492 |
"metadata": {}, |
|
|
493 |
"source": [ |
|
|
494 |
"cohort[\"event_type\"] = event_type\n", |
|
|
495 |
"cohort[\"event_value\"] = cohort.parallel_apply(generate_event_value, axis=1)" |
|
|
496 |
], |
|
|
497 |
"outputs": [], |
|
|
498 |
"execution_count": null |
|
|
499 |
}, |
|
|
500 |
{ |
|
|
501 |
"cell_type": "code", |
|
|
502 |
"id": "3c46789d", |
|
|
503 |
"metadata": {}, |
|
|
504 |
"source": [ |
|
|
505 |
"cohort[cohort.hadm_id == 29079034]" |
|
|
506 |
], |
|
|
507 |
"outputs": [], |
|
|
508 |
"execution_count": null |
|
|
509 |
}, |
|
|
510 |
{ |
|
|
511 |
"cell_type": "code", |
|
|
512 |
"id": "bee6b1f6", |
|
|
513 |
"metadata": {}, |
|
|
514 |
"source": [ |
|
|
515 |
"cohort.groupby(\"hadm_id\").event_type.count().describe()" |
|
|
516 |
], |
|
|
517 |
"outputs": [], |
|
|
518 |
"execution_count": null |
|
|
519 |
}, |
|
|
520 |
{ |
|
|
521 |
"cell_type": "code", |
|
|
522 |
"id": "56e27ab3", |
|
|
523 |
"metadata": {}, |
|
|
524 |
"source": [ |
|
|
525 |
"!rm -r {output_path}/'event_{event_type}'" |
|
|
526 |
], |
|
|
527 |
"outputs": [], |
|
|
528 |
"execution_count": null |
|
|
529 |
}, |
|
|
530 |
{ |
|
|
531 |
"cell_type": "code", |
|
|
532 |
"id": "30433d47", |
|
|
533 |
"metadata": {}, |
|
|
534 |
"source": [ |
|
|
535 |
"create_directory(f\"{output_path}/event_{event_type}\")" |
|
|
536 |
], |
|
|
537 |
"outputs": [], |
|
|
538 |
"execution_count": null |
|
|
539 |
}, |
|
|
540 |
{ |
|
|
541 |
"cell_type": "code", |
|
|
542 |
"id": "0ad33569", |
|
|
543 |
"metadata": {}, |
|
|
544 |
"source": [ |
|
|
545 |
"groups = cohort.groupby(\"hadm_id\")\n", |
|
|
546 |
" \n", |
|
|
547 |
"with ThreadPoolExecutor(max_workers=4) as executor:\n", |
|
|
548 |
" for hadm_id, group_df in tqdm(groups, total=groups.ngroups):\n", |
|
|
549 |
" future = executor.submit(\n", |
|
|
550 |
" save_group, \n", |
|
|
551 |
" group_df[[\"hadm_id\", \"event_type\", \"timestamp\", \"event_value\", \"timestamp_avail\"] + meta_cols], \n", |
|
|
552 |
" hadm_id, \n", |
|
|
553 |
" event_type\n", |
|
|
554 |
" )" |
|
|
555 |
], |
|
|
556 |
"outputs": [], |
|
|
557 |
"execution_count": null |
|
|
558 |
}, |
|
|
559 |
{ |
|
|
560 |
"cell_type": "code", |
|
|
561 |
"id": "43e3f09a", |
|
|
562 |
"metadata": {}, |
|
|
563 |
"source": [ |
|
|
564 |
"!ls -1 {output_path}/'event_{event_type}' | wc -l" |
|
|
565 |
], |
|
|
566 |
"outputs": [], |
|
|
567 |
"execution_count": null |
|
|
568 |
}, |
|
|
569 |
{ |
|
|
570 |
"cell_type": "code", |
|
|
571 |
"id": "5ec6d393", |
|
|
572 |
"metadata": {}, |
|
|
573 |
"source": "event_type = \"admission_info\"", |
|
|
574 |
"outputs": [], |
|
|
575 |
"execution_count": null |
|
|
576 |
}, |
|
|
577 |
{ |
|
|
578 |
"cell_type": "code", |
|
|
579 |
"id": "73f5aa52", |
|
|
580 |
"metadata": {}, |
|
|
581 |
"source": [ |
|
|
582 |
"def generate_event_value(x):\n", |
|
|
583 |
" s = f\"type: {x.admission_type}, location: {x.admission_location}\"\n", |
|
|
584 |
" if not pd.isna(x.chief_complaint):\n", |
|
|
585 |
" s += f\", chief complaint: {x.chief_complaint}\"\n", |
|
|
586 |
" return s" |
|
|
587 |
], |
|
|
588 |
"outputs": [], |
|
|
589 |
"execution_count": null |
|
|
590 |
}, |
|
|
591 |
{ |
|
|
592 |
"cell_type": "code", |
|
|
593 |
"id": "8c1d9ea5", |
|
|
594 |
"metadata": {}, |
|
|
595 |
"source": [ |
|
|
596 |
"meta_cols = [\"admission_type\", \"admission_location\", \"chief_complaint\"]\n", |
|
|
597 |
"for c in meta_cols:\n", |
|
|
598 |
" cohort[\"meta_\" + c] = cohort[c]\n", |
|
|
599 |
"meta_cols = [\"meta_\" + c for c in meta_cols]" |
|
|
600 |
], |
|
|
601 |
"outputs": [], |
|
|
602 |
"execution_count": null |
|
|
603 |
}, |
|
|
604 |
{ |
|
|
605 |
"cell_type": "code", |
|
|
606 |
"id": "814a4d14", |
|
|
607 |
"metadata": {}, |
|
|
608 |
"source": [ |
|
|
609 |
"print(generate_event_value(cohort.iloc[5]))" |
|
|
610 |
], |
|
|
611 |
"outputs": [], |
|
|
612 |
"execution_count": null |
|
|
613 |
}, |
|
|
614 |
{ |
|
|
615 |
"cell_type": "code", |
|
|
616 |
"id": "a3041145", |
|
|
617 |
"metadata": {}, |
|
|
618 |
"source": [ |
|
|
619 |
"print(generate_event_value(cohort.iloc[520]))" |
|
|
620 |
], |
|
|
621 |
"outputs": [], |
|
|
622 |
"execution_count": null |
|
|
623 |
}, |
|
|
624 |
{ |
|
|
625 |
"cell_type": "code", |
|
|
626 |
"id": "cf03657c", |
|
|
627 |
"metadata": {}, |
|
|
628 |
"source": [ |
|
|
629 |
"cohort[\"event_type\"] = event_type\n", |
|
|
630 |
"cohort[\"event_value\"] = cohort.parallel_apply(generate_event_value, axis=1)" |
|
|
631 |
], |
|
|
632 |
"outputs": [], |
|
|
633 |
"execution_count": null |
|
|
634 |
}, |
|
|
635 |
{ |
|
|
636 |
"cell_type": "code", |
|
|
637 |
"id": "3eeaa8ae", |
|
|
638 |
"metadata": {}, |
|
|
639 |
"source": [ |
|
|
640 |
"cohort[cohort.hadm_id == 29079034]" |
|
|
641 |
], |
|
|
642 |
"outputs": [], |
|
|
643 |
"execution_count": null |
|
|
644 |
}, |
|
|
645 |
{ |
|
|
646 |
"cell_type": "code", |
|
|
647 |
"id": "6af53072", |
|
|
648 |
"metadata": {}, |
|
|
649 |
"source": [ |
|
|
650 |
"cohort.groupby(\"hadm_id\").event_type.count().describe()" |
|
|
651 |
], |
|
|
652 |
"outputs": [], |
|
|
653 |
"execution_count": null |
|
|
654 |
}, |
|
|
655 |
{ |
|
|
656 |
"cell_type": "code", |
|
|
657 |
"id": "2aa672f8", |
|
|
658 |
"metadata": {}, |
|
|
659 |
"source": [ |
|
|
660 |
"!rm -r {output_path}/'event_{event_type}'" |
|
|
661 |
], |
|
|
662 |
"outputs": [], |
|
|
663 |
"execution_count": null |
|
|
664 |
}, |
|
|
665 |
{ |
|
|
666 |
"cell_type": "code", |
|
|
667 |
"id": "161a75a7", |
|
|
668 |
"metadata": {}, |
|
|
669 |
"source": [ |
|
|
670 |
"create_directory(f\"{output_path}/event_{event_type}\")" |
|
|
671 |
], |
|
|
672 |
"outputs": [], |
|
|
673 |
"execution_count": null |
|
|
674 |
}, |
|
|
675 |
{ |
|
|
676 |
"cell_type": "code", |
|
|
677 |
"id": "334a9676", |
|
|
678 |
"metadata": {}, |
|
|
679 |
"source": [ |
|
|
680 |
"groups = cohort.groupby(\"hadm_id\")\n", |
|
|
681 |
" \n", |
|
|
682 |
"with ThreadPoolExecutor(max_workers=4) as executor:\n", |
|
|
683 |
" for hadm_id, group_df in tqdm(groups, total=groups.ngroups):\n", |
|
|
684 |
" future = executor.submit(\n", |
|
|
685 |
" save_group, \n", |
|
|
686 |
" group_df[[\"hadm_id\", \"event_type\", \"timestamp\", \"event_value\", \"timestamp_avail\"] + meta_cols], \n", |
|
|
687 |
" hadm_id, \n", |
|
|
688 |
" event_type\n", |
|
|
689 |
" )" |
|
|
690 |
], |
|
|
691 |
"outputs": [], |
|
|
692 |
"execution_count": null |
|
|
693 |
}, |
|
|
694 |
{ |
|
|
695 |
"cell_type": "code", |
|
|
696 |
"id": "318c6395", |
|
|
697 |
"metadata": {}, |
|
|
698 |
"source": [ |
|
|
699 |
"!ls -1 {output_path}/'event_{event_type}' | wc -l" |
|
|
700 |
], |
|
|
701 |
"outputs": [], |
|
|
702 |
"execution_count": null |
|
|
703 |
}, |
|
|
704 |
{ |
|
|
705 |
"cell_type": "code", |
|
|
706 |
"id": "a8e66a9f", |
|
|
707 |
"metadata": {}, |
|
|
708 |
"source": [], |
|
|
709 |
"outputs": [], |
|
|
710 |
"execution_count": null |
|
|
711 |
} |
|
|
712 |
], |
|
|
713 |
"metadata": { |
|
|
714 |
"kernelspec": { |
|
|
715 |
"display_name": "pytorch20", |
|
|
716 |
"language": "python", |
|
|
717 |
"name": "pytorch20" |
|
|
718 |
}, |
|
|
719 |
"language_info": { |
|
|
720 |
"codemirror_mode": { |
|
|
721 |
"name": "ipython", |
|
|
722 |
"version": 3 |
|
|
723 |
}, |
|
|
724 |
"file_extension": ".py", |
|
|
725 |
"mimetype": "text/x-python", |
|
|
726 |
"name": "python", |
|
|
727 |
"nbconvert_exporter": "python", |
|
|
728 |
"pygments_lexer": "ipython3", |
|
|
729 |
"version": "3.9.19" |
|
|
730 |
} |
|
|
731 |
}, |
|
|
732 |
"nbformat": 4, |
|
|
733 |
"nbformat_minor": 5 |
|
|
734 |
} |