|
a |
|
b/src/model/modeling_llemr.py |
|
|
1 |
from typing import Optional, List |
|
|
2 |
|
|
|
3 |
import torch |
|
|
4 |
from transformers import LlavaForConditionalGeneration |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
class LlemrForConditionalGeneration(LlavaForConditionalGeneration): |
|
|
8 |
|
|
|
9 |
def forward( |
|
|
10 |
self, |
|
|
11 |
input_ids: torch.LongTensor = None, |
|
|
12 |
pixel_values: torch.FloatTensor = None, |
|
|
13 |
pixel_values_is_padding: torch.BoolTensor = None, |
|
|
14 |
attention_mask: Optional[torch.Tensor] = None, |
|
|
15 |
position_ids: Optional[torch.LongTensor] = None, |
|
|
16 |
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
17 |
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
18 |
vision_feature_layer: Optional[int] = None, |
|
|
19 |
vision_feature_select_strategy: Optional[str] = None, |
|
|
20 |
labels: Optional[torch.LongTensor] = None, |
|
|
21 |
use_cache: Optional[bool] = None, |
|
|
22 |
output_attentions: Optional[bool] = None, |
|
|
23 |
output_hidden_states: Optional[bool] = None, |
|
|
24 |
return_dict: Optional[bool] = None, |
|
|
25 |
): |
|
|
26 |
if pixel_values is not None and pixel_values_is_padding is not None: |
|
|
27 |
pixel_values = pixel_values[~pixel_values_is_padding].unsqueeze(1) |
|
|
28 |
return super().forward( |
|
|
29 |
input_ids=input_ids, |
|
|
30 |
pixel_values=pixel_values, |
|
|
31 |
attention_mask=attention_mask, |
|
|
32 |
position_ids=position_ids, |
|
|
33 |
past_key_values=past_key_values, |
|
|
34 |
inputs_embeds=inputs_embeds, |
|
|
35 |
vision_feature_layer=vision_feature_layer, |
|
|
36 |
vision_feature_select_strategy=vision_feature_select_strategy, |
|
|
37 |
labels=labels, |
|
|
38 |
use_cache=use_cache, |
|
|
39 |
output_attentions=output_attentions, |
|
|
40 |
output_hidden_states=output_hidden_states, |
|
|
41 |
return_dict=return_dict, |
|
|
42 |
) |
|
|
43 |
|
|
|
44 |
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels): |
|
|
45 |
num_image_patches = image_features.shape[1] |
|
|
46 |
assert num_image_patches == 1, "Only one image patch is supported." |
|
|
47 |
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) |
|
|
48 |
assert left_padding, "Input ids should be left-padded." |
|
|
49 |
( |
|
|
50 |
final_embedding, |
|
|
51 |
final_attention_mask, |
|
|
52 |
final_labels, |
|
|
53 |
position_ids |
|
|
54 |
) = super()._merge_input_ids_with_image_features( |
|
|
55 |
image_features=image_features, |
|
|
56 |
inputs_embeds=inputs_embeds, |
|
|
57 |
input_ids=input_ids, |
|
|
58 |
attention_mask=attention_mask, |
|
|
59 |
labels=labels, |
|
|
60 |
) |
|
|
61 |
return final_embedding, final_attention_mask, final_labels, position_ids |
|
|
62 |
|
|
|
63 |
def prepare_inputs_for_generation( |
|
|
64 |
self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, |
|
|
65 |
pixel_values_is_padding=None, **kwargs |
|
|
66 |
): |
|
|
67 |
model_inputs = super().prepare_inputs_for_generation( |
|
|
68 |
input_ids=input_ids, |
|
|
69 |
past_key_values=past_key_values, |
|
|
70 |
inputs_embeds=inputs_embeds, |
|
|
71 |
pixel_values=pixel_values, |
|
|
72 |
attention_mask=attention_mask, |
|
|
73 |
**kwargs, |
|
|
74 |
) |
|
|
75 |
model_inputs["pixel_values_is_padding"] = pixel_values_is_padding |
|
|
76 |
return model_inputs |