|
a |
|
b/src/eval/query_gpt4.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"id": "afdeba94", |
|
|
6 |
"metadata": {}, |
|
|
7 |
"source": [ |
|
|
8 |
"import os\n", |
|
|
9 |
"import sys\n", |
|
|
10 |
"\n", |
|
|
11 |
"src_path = os.path.abspath(\"../..\")\n", |
|
|
12 |
"print(src_path)\n", |
|
|
13 |
"sys.path.append(src_path)" |
|
|
14 |
], |
|
|
15 |
"outputs": [], |
|
|
16 |
"execution_count": null |
|
|
17 |
}, |
|
|
18 |
{ |
|
|
19 |
"cell_type": "code", |
|
|
20 |
"id": "0d5f2e19", |
|
|
21 |
"metadata": {}, |
|
|
22 |
"source": "from src.utils import create_directory, raw_data_path, processed_data_path, set_seed, remote_project_path", |
|
|
23 |
"outputs": [], |
|
|
24 |
"execution_count": null |
|
|
25 |
}, |
|
|
26 |
{ |
|
|
27 |
"cell_type": "code", |
|
|
28 |
"id": "e00815d2", |
|
|
29 |
"metadata": {}, |
|
|
30 |
"source": [ |
|
|
31 |
"set_seed(seed=42)" |
|
|
32 |
], |
|
|
33 |
"outputs": [], |
|
|
34 |
"execution_count": null |
|
|
35 |
}, |
|
|
36 |
{ |
|
|
37 |
"cell_type": "code", |
|
|
38 |
"id": "fd92d900", |
|
|
39 |
"metadata": {}, |
|
|
40 |
"source": [ |
|
|
41 |
"import pandas as pd" |
|
|
42 |
], |
|
|
43 |
"outputs": [], |
|
|
44 |
"execution_count": null |
|
|
45 |
}, |
|
|
46 |
{ |
|
|
47 |
"metadata": {}, |
|
|
48 |
"cell_type": "code", |
|
|
49 |
"source": "model_path = os.path.join(remote_project_path, \"output\")", |
|
|
50 |
"id": "4e04fa3e4c08145", |
|
|
51 |
"outputs": [], |
|
|
52 |
"execution_count": null |
|
|
53 |
}, |
|
|
54 |
{ |
|
|
55 |
"cell_type": "code", |
|
|
56 |
"id": "ef32981d", |
|
|
57 |
"metadata": {}, |
|
|
58 |
"source": "output_path = os.path.join(processed_data_path, \"mimic4\")", |
|
|
59 |
"outputs": [], |
|
|
60 |
"execution_count": null |
|
|
61 |
}, |
|
|
62 |
{ |
|
|
63 |
"cell_type": "code", |
|
|
64 |
"id": "539a6392", |
|
|
65 |
"metadata": {}, |
|
|
66 |
"source": [ |
|
|
67 |
"cohort = pd.read_csv(os.path.join(output_path, \"cohort_test_subset.csv\"))\n", |
|
|
68 |
"print(cohort.shape)\n", |
|
|
69 |
"cohort.head()" |
|
|
70 |
], |
|
|
71 |
"outputs": [], |
|
|
72 |
"execution_count": null |
|
|
73 |
}, |
|
|
74 |
{ |
|
|
75 |
"cell_type": "code", |
|
|
76 |
"id": "6659ecf8", |
|
|
77 |
"metadata": {}, |
|
|
78 |
"source": [ |
|
|
79 |
"hadm_ids = set(cohort.hadm_id.unique().tolist())\n", |
|
|
80 |
"len(hadm_ids)" |
|
|
81 |
], |
|
|
82 |
"outputs": [], |
|
|
83 |
"execution_count": null |
|
|
84 |
}, |
|
|
85 |
{ |
|
|
86 |
"cell_type": "code", |
|
|
87 |
"id": "4090a70d", |
|
|
88 |
"metadata": {}, |
|
|
89 |
"source": [ |
|
|
90 |
"qa = pd.read_csv(os.path.join(output_path, \"qa_test_subset.csv\"))\n", |
|
|
91 |
"qa[\"source\"] = qa.event_type.apply(lambda x: \"note\" if pd.isna(x) else \"event\")\n", |
|
|
92 |
"qa" |
|
|
93 |
], |
|
|
94 |
"outputs": [], |
|
|
95 |
"execution_count": null |
|
|
96 |
}, |
|
|
97 |
{ |
|
|
98 |
"cell_type": "code", |
|
|
99 |
"id": "dc67f44e", |
|
|
100 |
"metadata": {}, |
|
|
101 |
"source": [ |
|
|
102 |
"def get_events(hadm_id):\n", |
|
|
103 |
" df = pd.read_csv(os.path.join(output_path, f\"event_selected/event_{hadm_id}.csv\")) \n", |
|
|
104 |
" text = []\n", |
|
|
105 |
" for i, row in df.iterrows():\n", |
|
|
106 |
" text.append(f\"{row.timestamp:.2f} hour, {row.event_type}, {row.event_value}\")\n", |
|
|
107 |
" return \"\\n\".join(text)" |
|
|
108 |
], |
|
|
109 |
"outputs": [], |
|
|
110 |
"execution_count": null |
|
|
111 |
}, |
|
|
112 |
{ |
|
|
113 |
"cell_type": "code", |
|
|
114 |
"id": "1f080932", |
|
|
115 |
"metadata": {}, |
|
|
116 |
"source": [ |
|
|
117 |
"print(get_events(qa.iloc[2].hadm_id))" |
|
|
118 |
], |
|
|
119 |
"outputs": [], |
|
|
120 |
"execution_count": null |
|
|
121 |
}, |
|
|
122 |
{ |
|
|
123 |
"cell_type": "code", |
|
|
124 |
"id": "53830063", |
|
|
125 |
"metadata": {}, |
|
|
126 |
"source": [ |
|
|
127 |
"system_content = \"\"\"You are an AI assistant specialized in analyzing ICU patient data.\n", |
|
|
128 |
"You are given a sequence of clinical events from an ICU patient's hospital admission.\n", |
|
|
129 |
"Each event is formatted as follows: {time elapsed after admission (in hours)}, {event type}, {event value}.\n", |
|
|
130 |
"Based on this sequence of events, provide a concise and accurate answer to the question below.\n", |
|
|
131 |
"Keep your response within 256 tokens.\"\"\"" |
|
|
132 |
], |
|
|
133 |
"outputs": [], |
|
|
134 |
"execution_count": null |
|
|
135 |
}, |
|
|
136 |
{ |
|
|
137 |
"cell_type": "code", |
|
|
138 |
"id": "3fd4ea61", |
|
|
139 |
"metadata": {}, |
|
|
140 |
"source": [ |
|
|
141 |
"messages = [{\"role\": \"system\", \"content\": system_content},\n", |
|
|
142 |
" {\"role\": \"user\", \"content\": f\"{qa.iloc[0].q}\\n\\n\" + get_events(qa.iloc[0].hadm_id)}]" |
|
|
143 |
], |
|
|
144 |
"outputs": [], |
|
|
145 |
"execution_count": null |
|
|
146 |
}, |
|
|
147 |
{ |
|
|
148 |
"cell_type": "code", |
|
|
149 |
"id": "dfd9801f", |
|
|
150 |
"metadata": {}, |
|
|
151 |
"source": [ |
|
|
152 |
"print(messages[0][\"content\"])" |
|
|
153 |
], |
|
|
154 |
"outputs": [], |
|
|
155 |
"execution_count": null |
|
|
156 |
}, |
|
|
157 |
{ |
|
|
158 |
"cell_type": "code", |
|
|
159 |
"id": "248cd830", |
|
|
160 |
"metadata": {}, |
|
|
161 |
"source": [ |
|
|
162 |
"print(messages[1][\"content\"])" |
|
|
163 |
], |
|
|
164 |
"outputs": [], |
|
|
165 |
"execution_count": null |
|
|
166 |
}, |
|
|
167 |
{ |
|
|
168 |
"cell_type": "code", |
|
|
169 |
"id": "f064720f", |
|
|
170 |
"metadata": {}, |
|
|
171 |
"source": [ |
|
|
172 |
"prompts = {}\n", |
|
|
173 |
"for _, data in qa.iterrows():\n", |
|
|
174 |
" messages = [{\"role\": \"system\", \"content\": system_content},\n", |
|
|
175 |
" {\"role\": \"user\", \"content\": f\"{data.q}\\n\\n\" + get_events(data.hadm_id)}]\n", |
|
|
176 |
" prompts[(data.source, data.hadm_id)] = messages\n", |
|
|
177 |
"len(prompts)" |
|
|
178 |
], |
|
|
179 |
"outputs": [], |
|
|
180 |
"execution_count": null |
|
|
181 |
}, |
|
|
182 |
{ |
|
|
183 |
"cell_type": "code", |
|
|
184 |
"id": "3c1734d5", |
|
|
185 |
"metadata": {}, |
|
|
186 |
"source": [ |
|
|
187 |
"prompts[(\"note\", qa.iloc[0].hadm_id)]" |
|
|
188 |
], |
|
|
189 |
"outputs": [], |
|
|
190 |
"execution_count": null |
|
|
191 |
}, |
|
|
192 |
{ |
|
|
193 |
"cell_type": "code", |
|
|
194 |
"id": "52c4c16f", |
|
|
195 |
"metadata": {}, |
|
|
196 |
"source": [ |
|
|
197 |
"import tiktoken\n", |
|
|
198 |
"\n", |
|
|
199 |
"\n", |
|
|
200 |
"def num_tokens_from_message(message):\n", |
|
|
201 |
" encoding = tiktoken.encoding_for_model(\"gpt-4\")\n", |
|
|
202 |
" return len(encoding.encode(message[0][\"content\"])) + len(encoding.encode(message[1][\"content\"])) + 11 " |
|
|
203 |
], |
|
|
204 |
"outputs": [], |
|
|
205 |
"execution_count": null |
|
|
206 |
}, |
|
|
207 |
{ |
|
|
208 |
"cell_type": "code", |
|
|
209 |
"id": "e90c113b", |
|
|
210 |
"metadata": {}, |
|
|
211 |
"source": [ |
|
|
212 |
"num_tokens_from_message(messages)" |
|
|
213 |
], |
|
|
214 |
"outputs": [], |
|
|
215 |
"execution_count": null |
|
|
216 |
}, |
|
|
217 |
{ |
|
|
218 |
"cell_type": "code", |
|
|
219 |
"id": "b42067ab", |
|
|
220 |
"metadata": {}, |
|
|
221 |
"source": [ |
|
|
222 |
"prompts_num_tokens = {}\n", |
|
|
223 |
"for k, v in prompts.items():\n", |
|
|
224 |
" prompts_num_tokens[k] = num_tokens_from_message(v)" |
|
|
225 |
], |
|
|
226 |
"outputs": [], |
|
|
227 |
"execution_count": null |
|
|
228 |
}, |
|
|
229 |
{ |
|
|
230 |
"cell_type": "code", |
|
|
231 |
"id": "d80f78b7", |
|
|
232 |
"metadata": {}, |
|
|
233 |
"source": [ |
|
|
234 |
"import numpy as np\n", |
|
|
235 |
"\n", |
|
|
236 |
"\n", |
|
|
237 |
"print(\"mean: \", np.mean(list(prompts_num_tokens.values())))\n", |
|
|
238 |
"print(\"std: \", np.std(list(prompts_num_tokens.values())))\n", |
|
|
239 |
"print(\"min: \", np.min(list(prompts_num_tokens.values())))\n", |
|
|
240 |
"print(\"max: \", np.max(list(prompts_num_tokens.values())))\n", |
|
|
241 |
"print(\"25th Quantile: \", np.percentile(list(prompts_num_tokens.values()), 25))\n", |
|
|
242 |
"print(\"50th Quantile: \", np.percentile(list(prompts_num_tokens.values()), 50))\n", |
|
|
243 |
"print(\"75th Quantile: \", np.percentile(list(prompts_num_tokens.values()), 75))" |
|
|
244 |
], |
|
|
245 |
"outputs": [], |
|
|
246 |
"execution_count": null |
|
|
247 |
}, |
|
|
248 |
{ |
|
|
249 |
"cell_type": "code", |
|
|
250 |
"id": "40ea7c46", |
|
|
251 |
"metadata": {}, |
|
|
252 |
"source": [ |
|
|
253 |
"max_response_tokens = 256\n", |
|
|
254 |
"token_limit = 128000" |
|
|
255 |
], |
|
|
256 |
"outputs": [], |
|
|
257 |
"execution_count": null |
|
|
258 |
}, |
|
|
259 |
{ |
|
|
260 |
"cell_type": "code", |
|
|
261 |
"id": "b99ad70e", |
|
|
262 |
"metadata": {}, |
|
|
263 |
"source": [ |
|
|
264 |
"import copy\n", |
|
|
265 |
"\n", |
|
|
266 |
"\n", |
|
|
267 |
"def trim_message(message):\n", |
|
|
268 |
" trimmed_message = copy.deepcopy(message)\n", |
|
|
269 |
" encoding = tiktoken.encoding_for_model(\"gpt-4\")\n", |
|
|
270 |
" system_tokens = len(encoding.encode(message[0][\"content\"]))\n", |
|
|
271 |
" user_tokens = len(encoding.encode(message[1][\"content\"]))\n", |
|
|
272 |
" \n", |
|
|
273 |
" # If the total tokens are within the limit, no trimming is needed\n", |
|
|
274 |
" if system_tokens + user_tokens + 11 + max_response_tokens <= token_limit:\n", |
|
|
275 |
" return trimmed_message\n", |
|
|
276 |
" \n", |
|
|
277 |
" # Otherwise, trim the user message content\n", |
|
|
278 |
" available_tokens = token_limit - system_tokens - 11 - max_response_tokens\n", |
|
|
279 |
" trimmed_user_content = encoding.decode(encoding.encode(message[1][\"content\"])[:available_tokens])\n", |
|
|
280 |
" \n", |
|
|
281 |
" # Update the message with the trimmed content\n", |
|
|
282 |
" trimmed_message[1][\"content\"] = trimmed_user_content\n", |
|
|
283 |
" return trimmed_message" |
|
|
284 |
], |
|
|
285 |
"outputs": [], |
|
|
286 |
"execution_count": null |
|
|
287 |
}, |
|
|
288 |
{ |
|
|
289 |
"cell_type": "code", |
|
|
290 |
"id": "c836f4cf", |
|
|
291 |
"metadata": {}, |
|
|
292 |
"source": [ |
|
|
293 |
"trimmed_prompts = {}\n", |
|
|
294 |
"for k, v in prompts.items():\n", |
|
|
295 |
" trimmed_v = trim_message(v)\n", |
|
|
296 |
" if trimmed_v != v:\n", |
|
|
297 |
" print(f\"{k} is trimmed\")\n", |
|
|
298 |
" trimmed_prompts[k] = trim_message(v)\n", |
|
|
299 |
"len(trimmed_prompts)" |
|
|
300 |
], |
|
|
301 |
"outputs": [], |
|
|
302 |
"execution_count": null |
|
|
303 |
}, |
|
|
304 |
{ |
|
|
305 |
"cell_type": "code", |
|
|
306 |
"id": "59cf2588", |
|
|
307 |
"metadata": {}, |
|
|
308 |
"source": [ |
|
|
309 |
"import asyncio\n", |
|
|
310 |
"from openai import AsyncAzureOpenAI\n", |
|
|
311 |
"\n", |
|
|
312 |
"\n", |
|
|
313 |
"# TODO: Enter your credentials\n", |
|
|
314 |
"async_client = AsyncAzureOpenAI(\n", |
|
|
315 |
" azure_endpoint=\"\",\n", |
|
|
316 |
" api_key=\"\",\n", |
|
|
317 |
" api_version=\"\"\n", |
|
|
318 |
")" |
|
|
319 |
], |
|
|
320 |
"outputs": [], |
|
|
321 |
"execution_count": null |
|
|
322 |
}, |
|
|
323 |
{ |
|
|
324 |
"cell_type": "code", |
|
|
325 |
"id": "6d3b1c82", |
|
|
326 |
"metadata": {}, |
|
|
327 |
"source": [ |
|
|
328 |
"async def generate_chat_response(async_client, prompt):\n", |
|
|
329 |
" chat_params = {\n", |
|
|
330 |
" \"model\": \"gpt-4\",\n", |
|
|
331 |
" \"messages\": prompt,\n", |
|
|
332 |
" \"max_tokens\": max_response_tokens,\n", |
|
|
333 |
" \"temperature\": 0.0,\n", |
|
|
334 |
" }\n", |
|
|
335 |
" try:\n", |
|
|
336 |
" response = await async_client.chat.completions.create(**chat_params)\n", |
|
|
337 |
" except Exception as e:\n", |
|
|
338 |
" print(f\"Error in call_async: {e}\")\n", |
|
|
339 |
" time.sleep(10)\n", |
|
|
340 |
" print(f\"Sleep for 10s...\")\n", |
|
|
341 |
" return -1\n", |
|
|
342 |
" return response.choices[0].message.content" |
|
|
343 |
], |
|
|
344 |
"outputs": [], |
|
|
345 |
"execution_count": null |
|
|
346 |
}, |
|
|
347 |
{ |
|
|
348 |
"cell_type": "code", |
|
|
349 |
"id": "b4ebea20", |
|
|
350 |
"metadata": {}, |
|
|
351 |
"source": [ |
|
|
352 |
"import time\n", |
|
|
353 |
"\n", |
|
|
354 |
"\n", |
|
|
355 |
"async def process_prompts(prompts):\n", |
|
|
356 |
" # Gather all the futures together and wait for them to complete\n", |
|
|
357 |
" responses = await asyncio.gather(*(generate_chat_response(async_client, prompt) for prompt in prompts)) \n", |
|
|
358 |
" return responses" |
|
|
359 |
], |
|
|
360 |
"outputs": [], |
|
|
361 |
"execution_count": null |
|
|
362 |
}, |
|
|
363 |
{ |
|
|
364 |
"cell_type": "code", |
|
|
365 |
"id": "aae93763", |
|
|
366 |
"metadata": {}, |
|
|
367 |
"source": [ |
|
|
368 |
"def chunk_list(lst, chunk_size):\n", |
|
|
369 |
" \"\"\"Yield successive chunk_size chunks from lst.\"\"\"\n", |
|
|
370 |
" for i in range(0, len(lst), chunk_size):\n", |
|
|
371 |
" yield lst[i:i + chunk_size]" |
|
|
372 |
], |
|
|
373 |
"outputs": [], |
|
|
374 |
"execution_count": null |
|
|
375 |
}, |
|
|
376 |
{ |
|
|
377 |
"cell_type": "code", |
|
|
378 |
"id": "d4ff8a13", |
|
|
379 |
"metadata": {}, |
|
|
380 |
"source": [ |
|
|
381 |
"from tqdm.asyncio import tqdm\n", |
|
|
382 |
"\n", |
|
|
383 |
"\n", |
|
|
384 |
"async def process_prompts_in_batches(prompts, batch_size, repeat=3):\n", |
|
|
385 |
" all_responses = {}\n", |
|
|
386 |
" \n", |
|
|
387 |
" for i in range(repeat):\n", |
|
|
388 |
" \n", |
|
|
389 |
" print(f\"round {i}\")\n", |
|
|
390 |
" prev_n_responses = len(all_responses)\n", |
|
|
391 |
" \n", |
|
|
392 |
" prompts_k = [k for k in prompts.keys() if k not in all_responses]\n", |
|
|
393 |
"\n", |
|
|
394 |
" # Chunk the prompts into batches\n", |
|
|
395 |
" prompt_k_batches = list(chunk_list(prompts_k, batch_size))\n", |
|
|
396 |
"\n", |
|
|
397 |
" for batch_k in tqdm(prompt_k_batches, desc=\"Processing Batches\"):\n", |
|
|
398 |
" batch_v = [prompts[k] for k in batch_k]\n", |
|
|
399 |
" responses = await process_prompts(batch_v)\n", |
|
|
400 |
" all_responses |= {k: v for k, v in zip(batch_k, responses) if type(v) is str}\n", |
|
|
401 |
" print(f\"get {len(all_responses) - prev_n_responses} new responses\")\n", |
|
|
402 |
" \n", |
|
|
403 |
" return all_responses" |
|
|
404 |
], |
|
|
405 |
"outputs": [], |
|
|
406 |
"execution_count": null |
|
|
407 |
}, |
|
|
408 |
{ |
|
|
409 |
"cell_type": "code", |
|
|
410 |
"id": "dfac8357", |
|
|
411 |
"metadata": {}, |
|
|
412 |
"source": [ |
|
|
413 |
"# Choose an appropriate batch size\n", |
|
|
414 |
"batch_size = 10 # Adjust based on your system and API limits\n", |
|
|
415 |
"\n", |
|
|
416 |
"# Assuming we are in an async environment\n", |
|
|
417 |
"responses = await process_prompts_in_batches(trimmed_prompts, batch_size)\n", |
|
|
418 |
"print(f\"Processed {len(responses)} responses\")" |
|
|
419 |
], |
|
|
420 |
"outputs": [], |
|
|
421 |
"execution_count": null |
|
|
422 |
}, |
|
|
423 |
{ |
|
|
424 |
"cell_type": "code", |
|
|
425 |
"id": "7e65eb22", |
|
|
426 |
"metadata": {}, |
|
|
427 |
"source": [ |
|
|
428 |
"import json\n", |
|
|
429 |
"\n", |
|
|
430 |
"\n", |
|
|
431 |
"with open(os.path.join(model_path, \"gpt4/qa_output/answer.jsonl\"), \"w\") as file:\n", |
|
|
432 |
" for _, data in qa.iterrows():\n", |
|
|
433 |
" a_hat = responses.get((data.source, data.hadm_id), \"\")\n", |
|
|
434 |
" json_string = json.dumps({\"hadm_id\": data.hadm_id, \"q\": data.q, \"a\": data.a, \"a_hat\": a_hat, \"source\": data.source})\n", |
|
|
435 |
" file.write(json_string + '\\n')" |
|
|
436 |
], |
|
|
437 |
"outputs": [], |
|
|
438 |
"execution_count": null |
|
|
439 |
}, |
|
|
440 |
{ |
|
|
441 |
"cell_type": "code", |
|
|
442 |
"id": "e4424b6a", |
|
|
443 |
"metadata": {}, |
|
|
444 |
"source": [], |
|
|
445 |
"outputs": [], |
|
|
446 |
"execution_count": null |
|
|
447 |
} |
|
|
448 |
], |
|
|
449 |
"metadata": { |
|
|
450 |
"kernelspec": { |
|
|
451 |
"display_name": "llm", |
|
|
452 |
"language": "python", |
|
|
453 |
"name": "llm" |
|
|
454 |
}, |
|
|
455 |
"language_info": { |
|
|
456 |
"codemirror_mode": { |
|
|
457 |
"name": "ipython", |
|
|
458 |
"version": 3 |
|
|
459 |
}, |
|
|
460 |
"file_extension": ".py", |
|
|
461 |
"mimetype": "text/x-python", |
|
|
462 |
"name": "python", |
|
|
463 |
"nbconvert_exporter": "python", |
|
|
464 |
"pygments_lexer": "ipython3", |
|
|
465 |
"version": "3.9.19" |
|
|
466 |
} |
|
|
467 |
}, |
|
|
468 |
"nbformat": 4, |
|
|
469 |
"nbformat_minor": 5 |
|
|
470 |
} |