377 lines (376 with data), 10.5 kB
{
"cells": [
{
"cell_type": "code",
"id": "afdeba94",
"metadata": {},
"source": [
"import os\n",
"import sys\n",
"\n",
"src_path = os.path.abspath(\"../..\")\n",
"print(src_path)\n",
"sys.path.append(src_path)"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "0d5f2e19",
"metadata": {},
"source": "from src.utils import processed_data_path, set_seed, remote_project_path",
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "e00815d2",
"metadata": {},
"source": [
"set_seed(seed=42)"
],
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": "import pandas as pd",
"id": "2267de3ef42c4424"
},
{
"metadata": {},
"cell_type": "code",
"source": "answer_filename = \"llemr_vicuna\"",
"id": "14e9cc774ec18d0f",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"source": "model_path = os.path.join(remote_project_path, \"output\")",
"id": "921de6717a04852e",
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "ef32981d",
"metadata": {},
"source": "output_path = os.path.join(processed_data_path, \"mimic4\")",
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "16f23fa5",
"metadata": {},
"source": [
"b_answer = pd.read_json(os.path.join(model_path, f\"gpt4/qa_output/answer.jsonl\"), lines=True)\n",
"b_answer.a_hat = b_answer.a_hat.replace(\"\", float(\"nan\"))\n",
"b_answer = b_answer.dropna()\n",
"b_answer"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "539a6392",
"metadata": {},
"source": [
"answer = pd.read_json(os.path.join(model_path, f\"{answer_filename}/qa_output/answer.jsonl\"), lines=True)\n",
"answer"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "821203ad",
"metadata": {},
"source": [
"answer = b_answer.merge(answer, on=[\"hadm_id\", \"q\", \"a\", \"source\"])\n",
"answer"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "53830063",
"metadata": {},
"source": [
"system_content = \"\"\"You are a helpful and precise assistant for evaluating the quality of responses.\n",
"\n",
"Please assess the performance of two clinical AI assistants based on the question and the ground-truth answer provided below.\n",
"\n",
"Your evaluation should consider helpfulness, relevance, accuracy, and level of detail.\n",
"\n",
"Rate each AI assistant's response with a single score on a scale of 1 to 10, where 10 represents excellent performance.\n",
"\n",
"Please first output a single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space.\n",
"\n",
"In the subsequent line, provide a concise explanation of your evaluation.\n",
"\n",
"Avoid any potential bias and ensure that the order in which the responses were presented does not affect your judgment.\"\"\""
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "0a0d8d6c",
"metadata": {},
"source": [
"def generate_user_content(q, a, a_hat_1, a_hat_2):\n",
" return f\"\"\"[Question]\n",
"{q}\n",
"[End of Question]\n",
" \n",
"[Ground-truth Answer]\n",
"{a}\n",
"[End of Ground-truth Answer]\n",
"\n",
"[Assistant 1 Answer]\n",
"{a_hat_1}\n",
"[End of Assistant 1 Answer]\n",
"\n",
"[Assistant 2 Answer]\n",
"{a_hat_2}\n",
"[End of Assistant 2 Answer]\"\"\""
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "f064720f",
"metadata": {},
"source": [
"prompts = {}\n",
"for _, data in answer.iterrows():\n",
" messages = [{\"role\": \"system\", \"content\": system_content},\n",
" {\"role\": \"user\", \"content\": generate_user_content(data.q, data.a, data.a_hat_x, data.a_hat_y)}]\n",
" prompts[(data.source, data.hadm_id)] = messages\n",
"len(prompts)"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "59cf2588",
"metadata": {},
"source": [
"import asyncio\n",
"from openai import AsyncAzureOpenAI\n",
"\n",
"# TODO: Enter your credentials\n",
"async_client = AsyncAzureOpenAI(\n",
" azure_endpoint=\"\",\n",
" api_key=\"\",\n",
" api_version=\"\"\n",
")"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "6d3b1c82",
"metadata": {},
"source": [
"async def generate_chat_response(async_client, prompt):\n",
" chat_params = {\n",
" \"model\": \"gpt-3.5-turbo\",\n",
" \"messages\": prompt,\n",
" \"max_tokens\": 512,\n",
" \"temperature\": 0.0,\n",
" }\n",
" try:\n",
" response = await async_client.chat.completions.create(**chat_params)\n",
" except Exception as e:\n",
" print(f\"Error in call_async: {e}\")\n",
" time.sleep(10)\n",
" print(f\"Sleep for 10s...\")\n",
" return -1\n",
" return response.choices[0].message.content"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "b4ebea20",
"metadata": {},
"source": [
"import time\n",
"\n",
"\n",
"async def process_prompts(prompts):\n",
" # Gather all the futures together and wait for them to complete\n",
" responses = await asyncio.gather(*(generate_chat_response(async_client, prompt) for prompt in prompts))\n",
" return responses"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "aae93763",
"metadata": {},
"source": [
"def chunk_list(lst, chunk_size):\n",
" \"\"\"Yield successive chunk_size chunks from lst.\"\"\"\n",
" for i in range(0, len(lst), chunk_size):\n",
" yield lst[i:i + chunk_size]"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "d4ff8a13",
"metadata": {},
"source": [
"from tqdm.asyncio import tqdm\n",
"\n",
"\n",
"async def process_prompts_in_batches(prompts, batch_size, repeat=3):\n",
" all_responses = {}\n",
"\n",
" for i in range(repeat):\n",
"\n",
" print(f\"round {i}\")\n",
" prev_n_responses = len(all_responses)\n",
"\n",
" prompts_k = [k for k in prompts.keys() if k not in all_responses]\n",
"\n",
" # Chunk the prompts into batches\n",
" prompt_k_batches = list(chunk_list(prompts_k, batch_size))\n",
"\n",
" for batch_k in tqdm(prompt_k_batches, desc=\"Processing Batches\"):\n",
" batch_v = [prompts[k] for k in batch_k]\n",
" responses = await process_prompts(batch_v)\n",
" all_responses |= {k: v for k, v in zip(batch_k, responses) if type(v) is str}\n",
" print(f\"get {len(all_responses) - prev_n_responses} new responses\")\n",
"\n",
" return all_responses"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "dfac8357",
"metadata": {},
"source": [
"# Choose an appropriate batch size\n",
"batch_size = 10 # Adjust based on your system and API limits\n",
"\n",
"# Assuming we are in an async environment\n",
"responses = await process_prompts_in_batches(prompts, batch_size)\n",
"print(f\"Processed {len(responses)} responses\")"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "36317063",
"metadata": {},
"source": [
"def split_responase(r, verbose=False):\n",
" if verbose:\n",
" print(r)\n",
" split_text = r.split(\"\\n\", 1)\n",
" scores = split_text[0].split(\" \")\n",
" base_score = float(scores[0])\n",
" score = float(scores[1])\n",
" comment = split_text[1].strip() if len(split_text) > 1 else \"\"\n",
" if verbose:\n",
" print(\"scores:\", scores)\n",
" print(\"comment:\", comment)\n",
" return base_score, score, comment"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "f910eb36",
"metadata": {},
"source": [
"responses_split = {}\n",
"for k, r in responses.items():\n",
" responses_split[k] = split_responase(r)"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"id": "7e65eb22",
"metadata": {},
"source": [
"import json\n",
"\n",
"with open(os.path.join(model_path, f\"{answer_filename}/qa_output/answer_eval.jsonl\"), \"w\") as file:\n",
" c = 0\n",
" for _, data in answer.iterrows():\n",
" if (data.source, data.hadm_id) in responses_split:\n",
" base_score, score, comment = responses_split[(data.source, data.hadm_id)]\n",
" json_string = json.dumps({\n",
" \"hadm_id\": data.hadm_id,\n",
" \"q\": data.q,\n",
" \"a\": data.a,\n",
" \"a_hat\": data.a_hat_y,\n",
" \"score\": score,\n",
" \"base_a_hat\": data.a_hat_x,\n",
" \"base_score\": base_score,\n",
" \"comment\": comment,\n",
" \"source\": data.source\n",
" })\n",
" file.write(json_string + '\\n')\n",
" c += 1\n",
"c"
],
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": "",
"id": "41cde3512e408fbc"
}
],
"metadata": {
"kernelspec": {
"display_name": "llm",
"language": "python",
"name": "llm"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
}
},
"nbformat": 4,
"nbformat_minor": 5
}