1 |
geis_530.81 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=1.1288378916846884 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=7016 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=1.1288378916846884 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=7016 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=1.1288378916846884 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=7016 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 7016 0.713302209504959 0.7133015405588519 0.7133046125062819 0.7790814115760594 27102.464614778997 |
2 |
geis_530.81 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=11085 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=11085 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=10.0 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=11085 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 11085 0.7124416428217981 0.7124333903086386 0.7124511652186696 0.7797677496088135 29067.907099386997 |
3 |
geis_530.81 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=4.832930238571752 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=14899 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=4.832930238571752 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=14899 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=4.832930238571752 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=14899 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 14899 0.7177986704244745 0.7177912714176085 0.717828578014918 0.7834757240284795 29967.998122510002 |
4 |
geis_530.81 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=27164 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=27164 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=10.0 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=27164 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 27164 0.7138400636819345 0.7138399105675577 0.7138458814981385 0.7780705748316812 31368.730738906 |
5 |
geis_530.81 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=30993 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=30993 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=10.0 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=30993 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 30993 0.7177126137561585 0.7177125714225174 0.7177158530272484 0.7852474377551368 31328.313832345 |
6 |
geis_530.81 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=3674 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=3674 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=10.0 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=3674 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 3674 0.7151309137066758 0.7151254263511744 0.7151268390589058 0.7807917235998336 31676.835954585 |
7 |
geis_530.81 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=4.832930238571752 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=16612 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=4.832930238571752 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=16612 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=4.832930238571752 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=16612 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 16612 0.7147866870334115 0.7147845911691655 0.7147904965695766 0.7812232346333989 32171.024062735 |
8 |
geis_530.81 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=9168 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=9168 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=10.0 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=9168 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 9168 0.7151739420408338 0.7151712837068984 0.7151711151336916 0.7804675009832263 32335.617927257 |
9 |
geis_530.81 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=4180 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=4180 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=10.0 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=4180 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 4180 0.7184440954368452 0.7184388825086168 0.7184376576791706 0.7834033246297172 32548.052305206 |
10 |
geis_530.81 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=1188 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=1188 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=10.0 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=1188 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 1188 0.7177986704244745 0.7177982608010217 0.7178064581960166 0.7822759803927612 35902.323397182 |