[23d48c]: / results / icd9_530.81 / icd9_530.81_ScaledLogisticRegression.csv

Download this file

# dataset algorithm parameters seed accuracy f1_macro bal_accuracy roc_auc time
1 geis_530.81 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=1.1288378916846884 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=7016 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=1.1288378916846884 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=7016 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=1.1288378916846884 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=7016 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 7016 0.713302209504959 0.7133015405588519 0.7133046125062819 0.7790814115760594 27102.464614778997
2 geis_530.81 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=11085 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=11085 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=10.0 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=11085 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 11085 0.7124416428217981 0.7124333903086386 0.7124511652186696 0.7797677496088135 29067.907099386997
3 geis_530.81 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=4.832930238571752 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=14899 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=4.832930238571752 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=14899 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=4.832930238571752 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=14899 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 14899 0.7177986704244745 0.7177912714176085 0.717828578014918 0.7834757240284795 29967.998122510002
4 geis_530.81 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=27164 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=27164 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=10.0 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=27164 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 27164 0.7138400636819345 0.7138399105675577 0.7138458814981385 0.7780705748316812 31368.730738906
5 geis_530.81 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=30993 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=30993 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=10.0 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=30993 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 30993 0.7177126137561585 0.7177125714225174 0.7177158530272484 0.7852474377551368 31328.313832345
6 geis_530.81 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=3674 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=3674 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=10.0 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=3674 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 3674 0.7151309137066758 0.7151254263511744 0.7151268390589058 0.7807917235998336 31676.835954585
7 geis_530.81 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=4.832930238571752 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=16612 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=4.832930238571752 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=16612 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=4.832930238571752 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=16612 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 16612 0.7147866870334115 0.7147845911691655 0.7147904965695766 0.7812232346333989 32171.024062735
8 geis_530.81 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=9168 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=9168 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=10.0 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=9168 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 9168 0.7151739420408338 0.7151712837068984 0.7151711151336916 0.7804675009832263 32335.617927257
9 geis_530.81 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=4180 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=4180 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=10.0 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=4180 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 4180 0.7184440954368452 0.7184388825086168 0.7184376576791706 0.7834033246297172 32548.052305206
10 geis_530.81 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=1188 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=10.0 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=1188 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=10.0 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=1188 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 1188 0.7177986704244745 0.7177982608010217 0.7178064581960166 0.7822759803927612 35902.323397182