1 |
geis_327.23 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=11085 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=11085 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.12742749857031335 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=11085 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 11085 0.771939377438969 0.771938295530593 0.771975092954194 0.8546913947115438 4820.3938225619995 |
2 |
geis_327.23 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.06158482110660264 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=9168 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.06158482110660264 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=9168 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.06158482110660264 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=9168 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 9168 0.7700335783646429 0.7700185750088707 0.7700358344511216 0.8494575844679559 4912.153846426 |
3 |
geis_327.23 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=14899 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=14899 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.12742749857031335 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=14899 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 14899 0.7730284054814411 0.773028218547785 0.7730300818064897 0.8514521047249572 5474.044827928999 |
4 |
geis_327.23 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=1.623776739188721 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=27164 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=1.623776739188721 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=27164 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=1.623776739188721 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=27164 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 27164 0.7665849895634813 0.766577359296911 0.7666088195807466 0.8498495154274198 5664.888149194 |
5 |
geis_327.23 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=4180 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=4180 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.08858667904100823 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=4180 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 4180 0.7728469008076958 0.7728372020114425 0.7728375319710326 0.8546070079198747 5485.203398467 |
6 |
geis_327.23 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.37926901907322497 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=16612 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.37926901907322497 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=16612 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.37926901907322497 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=16612 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 16612 0.7709411017333696 0.7709385190501177 0.7709461396088643 0.8517327399727084 5657.986315453 |
7 |
geis_327.23 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.5455594781168517 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=1188 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.5455594781168517 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=1188 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.5455594781168517 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=1188 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 1188 0.775297213903258 0.7752943990306452 0.7752982349818089 0.8574764711021609 5761.591301232 |
8 |
geis_327.23 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=1.1288378916846884 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=7016 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=1.1288378916846884 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=7016 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=1.1288378916846884 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=7016 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 7016 0.7801978400943824 0.7801950866123677 0.7802329144786988 0.8576748059424875 5856.365771109 |
9 |
geis_327.23 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.5455594781168517 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=3674 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.5455594781168517 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=3674 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.5455594781168517 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=3674 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 3674 0.7766584989563481 0.7766518767845699 0.7766561880736036 0.8577884974473707 7971.22693658 |
10 |
geis_327.23 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=30993 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=30993 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.08858667904100823 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=30993 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 30993 0.7762954896088574 0.7762879427717987 0.7762937505744896 0.8556711142182511 8186.225348821 |