1 |
geis_250.40 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=14899 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=14899 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.08858667904100823 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=14899 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 14899 0.9079774908970539 0.9079480792785684 0.908031193539342 0.9571386323400842 2902.4283406500003 |
2 |
geis_250.40 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.18329807108324356 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=7016 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.18329807108324356 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=7016 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.18329807108324356 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=7016 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 7016 0.9074809665673618 0.9074580882418015 0.9076248397306126 0.9588018506601056 2309.503862349 |
3 |
geis_250.40 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=30993 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=30993 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.08858667904100823 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=30993 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 30993 0.9069844422376696 0.9069513170390364 0.9071389906728848 0.9630974087450471 2397.523241543 |
4 |
geis_250.40 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=16612 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=16612 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.08858667904100823 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=16612 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 16612 0.9107911287653095 0.9107587992164645 0.9107621217354107 0.9607320113393911 2940.3623998790003 |
5 |
geis_250.40 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.37926901907322497 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=1188 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.37926901907322497 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=1188 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.37926901907322497 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=1188 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 1188 0.9023502151605428 0.902303585200094 0.9022986887348616 0.9581972123220419 2882.8816881440002 |
6 |
geis_250.40 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=9168 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=9168 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.08858667904100823 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=9168 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 9168 0.9131082423038729 0.9130635449699269 0.9130606048918346 0.9608175936339355 3102.416431592 |
7 |
geis_250.40 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=27164 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=27164 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.12742749857031335 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=27164 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 27164 0.9031777557100298 0.9031462341236749 0.9031900948858793 0.9556504909856935 3621.7347135910004 |
8 |
geis_250.40 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=11085 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=11085 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.12742749857031335 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=11085 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 11085 0.9094670638861304 0.9094058939810366 0.9093396069287142 0.9611746774080436 4463.262982641 |
9 |
geis_250.40 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.37926901907322497 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=4180 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.37926901907322497 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=4180 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.37926901907322497 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=4180 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 4180 0.9054948692485931 0.9054886531961452 0.9056091051502578 0.9594642157408486 3305.601914107 |
10 |
geis_250.40 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=3674 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=3674 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.12742749857031335 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=3674 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 3674 0.9126117179741807 0.9125080287967089 0.9122878498046825 0.9646663796946586 4355.554292494 |