1 |
geis_250.00 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.7847599703514611 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=14899 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.7847599703514611 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=14899 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.7847599703514611 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=14899 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 14899 0.8442150744119059 0.8439909886358006 0.8441058997732074 0.9173016746254614 22143.158841851 |
2 |
geis_250.00 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.7847599703514611 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=30993 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.7847599703514611 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=30993 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.7847599703514611 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=30993 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 30993 0.8421614124926655 0.8419690882709834 0.842099217506469 0.9155122926815988 21843.565939501 |
3 |
geis_250.00 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=1.623776739188721 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=11085 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=1.623776739188721 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=11085 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=1.623776739188721 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=11085 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 11085 0.8469355096815491 0.8467109709186904 0.8468726478182886 0.9190584260756934 22375.512879096 |
4 |
geis_250.00 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=16612 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=16612 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=10.0 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=16612 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 16612 0.8469355096815491 0.8467756671035513 0.8469819332392928 0.9183675531402986 22504.184688629997 |
5 |
geis_250.00 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=3.359818286283781 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=9168 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=3.359818286283781 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=9168 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=3.359818286283781 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=9168 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 9168 0.8426148183709393 0.8423947673677425 0.8423788084303439 0.9171622301777915 22839.956683944998 |
6 |
geis_250.00 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.26366508987303583 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=1188 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.26366508987303583 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=1188 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.26366508987303583 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=1188 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 1188 0.8441083906758414 0.8439401683280494 0.8442019616078713 0.9174565895130586 22771.821643887 |
7 |
geis_250.00 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=4180 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=10.0 |
class_weight=None |
dual=False |
fit_intercept=True intercept_scaling=1 |
max_iter=1000 |
multi_class='ovr' |
n_jobs=1 penalty='l1' |
random_state=4180 |
solver='saga' |
tol=0.0001 verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=10.0 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=4180 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 4180 0.8429081986451166 0.8427072918450522 0.8430268383981869 0.9182612456010213 22859.552020529998 |
8 |
geis_250.00 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=1.623776739188721 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=3674 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=1.623776739188721 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=3674 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=1.623776739188721 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=3674 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 3674 0.8432815917213421 0.8431049688577013 0.8433432659289435 0.917925208021695 23218.465988754997 |
9 |
geis_250.00 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.5455594781168517 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=7016 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.5455594781168517 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=7016 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.5455594781168517 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=7016 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 7016 0.8433882754574065 0.8432117728271651 0.8433585435777271 0.9180505734931301 23693.730120852 |
10 |
geis_250.00 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=1.1288378916846884 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=27164 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=1.1288378916846884 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=27164 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=1.1288378916846884 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=27164 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 27164 0.842534805568891 0.8423550742100854 0.8425330068565542 0.9156227106985868 32973.327275236006 |