[23d48c]: / analysis / compare.py

Download this file

142 lines (117 with data), 5.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.switch_backend('agg')
import seaborn as sns
sns.set_style("whitegrid")
import math
import argparse
from glob import glob
import pdb
def main():
"""Analyzes results and generates figures."""
parser = argparse.ArgumentParser(description="An analyst for quick ML applications.",
add_help=False)
parser.add_argument('RUN_DIR', action='store', type=str, help='Path to results from analysis.')
parser.add_argument('-max_feat',action='store',dest='MAX_FEAT',default=10,type=int,
help = 'Max features to show in importance plots.')
args = parser.parse_args()
# dataset = args.NAME
# dataset = args.NAME.split('/')[-1].split('.')[0]
# run_dir = 'results/' + dataset + '/'
run_dir = args.RUN_DIR
if run_dir[-1] != '/':
run_dir += '/'
dataset = run_dir.split('/')[-2]
print('dataset:',dataset)
print('loading data from',run_dir)
frames = [] # data frames to combine
count = 0
for f in glob(run_dir + '*.csv'):
if 'imp_score' not in f:
frames.append(pd.read_csv(f,sep='\t',index_col=False))
count = count + 1
df = pd.concat(frames, join='outer', ignore_index=True)
print('loaded',count,'result files with results from these learners:',df['algorithm'].unique())
restricted_cols = ['prep_alg','preprocessor', 'prep-parameters', 'algorithm', 'alg-parameters','dataset',
'trial','seed','parameters']
columns_to_plot = [c for c in df.columns if c not in restricted_cols ]
#['accuracy','f1_macro','bal_accuracy']
print('generating boxplots for these columns:',columns_to_plot)
for col in columns_to_plot:
fig = plt.figure()
# for i, prep in enumerate(unique_preps):
# fig.add_subplot(math.ceil(len(unique_preps)), 2,i+1)
# pdb.set_trace()
df[col] = df[col].astype(np.float)
sns.boxplot(data=df,x="algorithm",y=col)
# plt.title(prep,size=16)
plt.gca().set_xticklabels(df.algorithm.unique(),size=14,rotation=45)
plt.ylabel(col,size=16)
plt.ylim(0.5,1.0)
plt.xlabel('')
fig.tight_layout()
plt.savefig(run_dir + '_'.join([ dataset, col,'boxplots.pdf']))
####################################################################### feature importance plots
frames = [] # data frames to combine
count = 0
for f in glob(run_dir + '*.imp_score'):
frames.append(pd.read_csv(f,sep='\t',index_col=False))
count = count + 1
df = pd.concat(frames, join='outer', ignore_index=True)
print('loaded',count,'feature importance files with results from these learners:',df['algorithm'].unique())
dfp = df.groupby(['algorithm','feature']).median().unstack(['algorithm'])
dfpn = df.groupby(['feature','algorithm']).median().groupby('feature').sum().unstack()
dfpn.sort_values(ascending=False, inplace=True)
# sort by median feature importance
nf = min(args.MAX_FEAT, dfpn.index.labels[1].shape[0])
dfpw = dfp.iloc[dfpn.index.labels[1][:nf]]
h = dfpw['score'].plot(kind='bar', stacked=True)
leg = plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.ylabel('Importance Score')
plt.savefig(run_dir + '_'.join([ dataset, 'importance_scores.pdf']),bbox_extra_artists=(leg,h), bbox_inches='tight')
############################################################# roc curves
frames = [] # data frames to combine
count = 0
for f in glob(run_dir + '*.roc'):
frames.append(pd.read_csv(f,sep='\t',index_col=False))
count = count + 1
df = pd.concat(frames, join='outer', ignore_index=True)
print('loaded',count,'roc files with results from these learners:',df['algorithm'].unique())
h, ax = plt.subplots()
ax.plot([0, 1],[0, 1],'--k',label='_nolegend_')
colors = ('r','y','b','g','c','k')
colors = plt.cm.Blues(np.linspace(0.1, 0.9, len(df['algorithm'].unique())))
n_algs = len(df['algorithm'].unique())
markers = ['o','v','^','<','>','8','s',
'p','P','*','h','H','+','x','X','D','d','|','_']
for i, (alg,df_g) in enumerate(df.groupby('algorithm')):
aucs = df_g.auc.values
seed_max = df_g.loc[df_g.auc.idxmax()]['seed']
seed_min = df_g.loc[df_g.auc.idxmin()]['seed']
seed_med = df_g.loc[np.abs(df_g.auc - df_g.auc.median()) == np.min(np.abs(df_g.auc - df_g.auc.median()))]['seed']
seed_med = seed_med.iloc[0]
auc = df_g.auc.median()
# fpr = df_g['fpr'].unique()
tprs,fprs=[],[]
fpr_min = df_g.loc[df_g.seed == seed_min,:]['fpr']
fpr_max = df_g.loc[df_g.seed == seed_max,:]['fpr']
tpr_min = df_g.loc[df_g.seed == seed_min,:]['tpr']
tpr_max = df_g.loc[df_g.seed == seed_max,:]['tpr']
tpr_med = df_g.loc[df_g.seed == seed_med,:]['tpr']
fpr_med = df_g.loc[df_g.seed == seed_med,:]['fpr']
ax.plot(fpr_med,tpr_med, color=colors[i % n_algs], marker=markers[i],
linestyle='--', linewidth=1, label='{:s} (AUC = {:0.2f})'.format(alg,auc))
# ax.plot(fpr_max,tpr_max, color=colors[i % n_algs],
# linestyle='--', linewidth=1, label='_nolegend_', alpha=0.1)
# ax.plot(fpr_min,tpr_min,color=colors[i % n_algs],
# linestyle='--', linewidth=1, label='_nolegend_', alpha=0.1)
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
leg = plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.ylim(0,1)
plt.xlim(0,1)
plt.savefig(run_dir + '_'.join([ dataset, 'roc_curves.pdf']), bbox_inches='tight')
print('done!')
if __name__ == '__main__':
main()