1 |
geis_585.9 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.18329807108324356 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=27164 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.18329807108324356 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=27164 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.18329807108324356 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=27164 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 27164 0.8373315806769636 0.8369138902612163 0.8368602073051028 0.9002672535357308 1097.895486549 |
2 |
geis_585.9 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=14899 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=14899 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.08858667904100823 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=14899 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 14899 0.821557673348669 0.8211230299948611 0.8210607790089096 0.8836213190977896 1229.699538569 |
3 |
geis_585.9 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=11085 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=11085 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.12742749857031335 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=11085 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 11085 0.8435754189944135 0.8434751975379082 0.8440695826647345 0.9006451384334352 1289.5452446919999 |
4 |
geis_585.9 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=7016 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=7016 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.08858667904100823 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=7016 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 7016 0.8209004272099901 0.8205627851997717 0.8205436765192538 0.8843995088827081 1153.283566122 |
5 |
geis_585.9 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=16612 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=16612 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.12742749857031335 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=16612 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 16612 0.8146565888925402 0.8144906895782423 0.8147521622571969 0.8827603456155705 1245.3389371869998 |
6 |
geis_585.9 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=1188 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=1188 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.08858667904100823 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=1188 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 1188 0.8370029576076241 0.836589854965766 0.8364959634180167 0.8944293181230996 1201.392551328 |
7 |
geis_585.9 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=30993 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=30993 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.12742749857031335 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=30993 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 30993 0.8156424581005587 0.8151934066797736 0.8152248952574002 0.8913485075097571 1264.663049327 |
8 |
geis_585.9 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=9168 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=9168 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.12742749857031335 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=9168 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 9168 0.8139993427538613 0.8136644766622151 0.8139318846664905 0.8847096877867224 1419.1408451529999 |
9 |
geis_585.9 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=3674 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.12742749857031335 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=3674 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.12742749857031335 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=3674 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 3674 0.8258297732500821 0.8257728568675391 0.8264583108268695 0.8928289004602122 1987.643992003 |
10 |
geis_585.9 ScaleLR memory=None |
steps=[('scale' |
StandardScaler(copy=True |
with_mean=True |
with_std=True)) |
('lr' |
LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=4180 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False))] |
scale=StandardScaler(copy=True |
with_mean=True |
with_std=True) |
lr=LogisticRegression(C=0.08858667904100823 |
class_weight=None |
dual=False fit_intercept=True |
intercept_scaling=1 |
max_iter=1000 multi_class='ovr' |
n_jobs=1 |
penalty='l1' |
random_state=4180 solver='saga' |
tol=0.0001 |
verbose=0 |
warm_start=False) |
scale__copy=True |
scale__with_mean=True |
scale__with_std=True |
lr__C=0.08858667904100823 |
lr__class_weight=None |
lr__dual=False |
lr__fit_intercept=True |
lr__intercept_scaling=1 |
lr__max_iter=1000 |
lr__multi_class=ovr |
lr__n_jobs=1 |
lr__penalty=l1 |
lr__random_state=4180 |
lr__solver=saga |
lr__tol=0.0001 |
lr__verbose=0 |
lr__warm_start=False 4180 0.8284587578047979 0.828046489755834 0.8285757791744962 0.8914084537463013 1872.499381977 |