[23d48c]: / results / icd9_327.23 / icd9_327.23_ScaledLogisticRegression.csv

Download this file

# dataset algorithm parameters seed accuracy f1_macro bal_accuracy roc_auc time
1 geis_327.23 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=0.12742749857031335 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=11085 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=0.12742749857031335 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=11085 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=0.12742749857031335 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=11085 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 11085 0.771939377438969 0.771938295530593 0.771975092954194 0.8546913947115438 4820.3938225619995
2 geis_327.23 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=0.06158482110660264 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=9168 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=0.06158482110660264 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=9168 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=0.06158482110660264 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=9168 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 9168 0.7700335783646429 0.7700185750088707 0.7700358344511216 0.8494575844679559 4912.153846426
3 geis_327.23 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=0.12742749857031335 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=14899 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=0.12742749857031335 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=14899 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=0.12742749857031335 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=14899 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 14899 0.7730284054814411 0.773028218547785 0.7730300818064897 0.8514521047249572 5474.044827928999
4 geis_327.23 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=1.623776739188721 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=27164 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=1.623776739188721 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=27164 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=1.623776739188721 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=27164 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 27164 0.7665849895634813 0.766577359296911 0.7666088195807466 0.8498495154274198 5664.888149194
5 geis_327.23 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=0.08858667904100823 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=4180 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=0.08858667904100823 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=4180 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=0.08858667904100823 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=4180 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 4180 0.7728469008076958 0.7728372020114425 0.7728375319710326 0.8546070079198747 5485.203398467
6 geis_327.23 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=0.37926901907322497 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=16612 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=0.37926901907322497 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=16612 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=0.37926901907322497 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=16612 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 16612 0.7709411017333696 0.7709385190501177 0.7709461396088643 0.8517327399727084 5657.986315453
7 geis_327.23 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=0.5455594781168517 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=1188 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=0.5455594781168517 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=1188 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=0.5455594781168517 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=1188 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 1188 0.775297213903258 0.7752943990306452 0.7752982349818089 0.8574764711021609 5761.591301232
8 geis_327.23 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=1.1288378916846884 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=7016 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=1.1288378916846884 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=7016 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=1.1288378916846884 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=7016 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 7016 0.7801978400943824 0.7801950866123677 0.7802329144786988 0.8576748059424875 5856.365771109
9 geis_327.23 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=0.5455594781168517 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=3674 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=0.5455594781168517 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=3674 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=0.5455594781168517 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=3674 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 3674 0.7766584989563481 0.7766518767845699 0.7766561880736036 0.8577884974473707 7971.22693658
10 geis_327.23 ScaleLR memory=None steps=[('scale' StandardScaler(copy=True with_mean=True with_std=True)) ('lr' LogisticRegression(C=0.08858667904100823 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=30993 solver='saga' tol=0.0001 verbose=0 warm_start=False))] scale=StandardScaler(copy=True with_mean=True with_std=True) lr=LogisticRegression(C=0.08858667904100823 class_weight=None dual=False fit_intercept=True intercept_scaling=1 max_iter=1000 multi_class='ovr' n_jobs=1 penalty='l1' random_state=30993 solver='saga' tol=0.0001 verbose=0 warm_start=False) scale__copy=True scale__with_mean=True scale__with_std=True lr__C=0.08858667904100823 lr__class_weight=None lr__dual=False lr__fit_intercept=True lr__intercept_scaling=1 lr__max_iter=1000 lr__multi_class=ovr lr__n_jobs=1 lr__penalty=l1 lr__random_state=30993 lr__solver=saga lr__tol=0.0001 lr__verbose=0 lr__warm_start=False 30993 0.7762954896088574 0.7762879427717987 0.7762937505744896 0.8556711142182511 8186.225348821