--- a +++ b/analysis/ml/XGBoostClassifier.py @@ -0,0 +1,30 @@ +import multiprocessing + +if __name__ == '__main__': + multiprocessing.set_start_method('forkserver') + import sys + from xgboost import XGBClassifier # Assumes XGBoost v0.6 + import pdb + from evaluate_model import evaluate_model + import numpy as np + + dataset = sys.argv[1] + save_file = sys.argv[2] + random_seed = int(sys.argv[3]) + rare = eval(sys.argv[4]) + + # Read the data set into meory + # parameter variation + hyper_params = { + 'n_estimators': [500], + 'gamma': [0] + list(np.logspace(-4,2,3)), + 'learning_rate':[0.001, 0.01, 0.1, 0.3] + } + # hyper_params = { + # 'n_estimators': (500,), + # } + # create the classifier + clf = XGBClassifier(n_jobs=1) + + # evaluate the model + evaluate_model(dataset, save_file, random_seed, clf, 'XGB', hyper_params,False,rare=rare)