Switch to unified view

a b/analysis/ml/RandomForestClassifier.py
1
import multiprocessing
2
 
3
if __name__ == '__main__':
4
    multiprocessing.set_start_method('forkserver')
5
    import sys
6
    from sklearn.ensemble import RandomForestClassifier
7
    import pdb
8
    from evaluate_model import evaluate_model
9
    import numpy as np
10
11
    dataset = sys.argv[1]
12
    save_file = sys.argv[2]
13
    random_seed = int(sys.argv[3])
14
    rare = eval(sys.argv[4])
15
16
    # Read the data set into meory
17
    # parameter variation
18
    hyper_params = [{
19
       'n_estimators': [500],
20
       'min_samples_leaf': np.logspace(-4,-1,4),
21
       'max_features': ('sqrt','log2',None),
22
    }]
23
24
    # hyper_params = {
25
    #    'n_estimators': [100,500],
26
    #    'criterion': ('gini',)
27
    # }
28
29
    # create the classifier
30
    clf = RandomForestClassifier(class_weight='balanced',n_jobs=1)
31
32
    # evaluate the model
33
    evaluate_model(dataset, save_file, random_seed, clf, 'RF', hyper_params,False,rare=rare)