74 lines (73 with data), 1.7 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from utilfunction import col_convert\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset csv (C:/Users/parkm/.cache/huggingface/datasets/danielpark___csv/danielpark--MQuAD-v1-87d38281de25bbdb/0.0.0/6954658bab30a358235fa864b05cf819af0e179325c740e4bc853bcc7ec513e1)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "666e409b2e434e94be2a7455f5063123",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from datasets import load_dataset\n",
"from utilfunction import col_convert\n",
"\n",
"qa = load_dataset(\"danielpark/MQuAD-v1\", \"csv\")\n",
"df_qa = pd.DataFrame(qa['train'])\n",
"\n",
"df_qa = col_convert(df_qa, ['Q_FFNN_embeds', 'A_FFNN_embeds'])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "miccai",
"language": "python",
"name": "miccai"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}