|
a |
|
b/chatbot.py |
|
|
1 |
import streamlit as st |
|
|
2 |
import tensorflow as tf |
|
|
3 |
from streamlit_chat import message |
|
|
4 |
from transformers import GPT2Tokenizer, TFGPT2LMHeadModel, AutoTokenizer |
|
|
5 |
from modules.chatbot.inferencer import Inferencer |
|
|
6 |
from modules.chatbot.dataloader import get_bert_index, get_dataset |
|
|
7 |
from modules.chatbot.config import Config as CONF |
|
|
8 |
from utilfunction import find_path |
|
|
9 |
|
|
|
10 |
# Streamlit App |
|
|
11 |
st.header("GPT-BERT-Medical-QA-Chatbot") |
|
|
12 |
|
|
|
13 |
# Load necessary models and data |
|
|
14 |
gpt2_tokenizer = GPT2Tokenizer.from_pretrained(CONF.chat_params["gpt_tok"]) |
|
|
15 |
medi_qa_chatGPT2 = TFGPT2LMHeadModel.from_pretrained(CONF.chat_params["tf_gpt_model"]) |
|
|
16 |
biobert_tokenizer = AutoTokenizer.from_pretrained(CONF.chat_params["bert_tok"]) |
|
|
17 |
df_qa = get_dataset(CONF.chat_params["data"]) |
|
|
18 |
max_answer_len = CONF.chat_params["max_answer_len"] |
|
|
19 |
isEval = CONF.chat_params["isEval"] |
|
|
20 |
answer_index = get_bert_index(df_qa, "A_FFNN_embeds") |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
# Load question extractor model |
|
|
24 |
@st.cache_resource |
|
|
25 |
def load_tf_model(path): |
|
|
26 |
return tf.keras.models.load_model(path) |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
try: |
|
|
30 |
if CONF.chat_params["runDocker"]: |
|
|
31 |
tf_q_extractor_path = find_path( |
|
|
32 |
CONF.chat_params["container_mounted_folder_path"], |
|
|
33 |
"folder", |
|
|
34 |
"question_extractor_model", |
|
|
35 |
) |
|
|
36 |
question_extractor_model_v1 = load_tf_model(tf_q_extractor_path[0]) |
|
|
37 |
else: |
|
|
38 |
question_extractor_model_v1 = load_tf_model(CONF.chat_params["tf_q_extractor"]) |
|
|
39 |
except Exception as e: |
|
|
40 |
tf_q_extractor_path = find_path("./", "folder", "question_extractor_model") |
|
|
41 |
question_extractor_model_v1 = load_tf_model(tf_q_extractor_path[0]) |
|
|
42 |
|
|
|
43 |
# Initialize chatbot inferencer |
|
|
44 |
chatbot = Inferencer( |
|
|
45 |
medi_qa_chatGPT2, |
|
|
46 |
biobert_tokenizer, |
|
|
47 |
gpt2_tokenizer, |
|
|
48 |
question_extractor_model_v1, |
|
|
49 |
df_qa, |
|
|
50 |
answer_index, |
|
|
51 |
max_answer_len, |
|
|
52 |
) |
|
|
53 |
|
|
|
54 |
|
|
|
55 |
# Function to get model's answer |
|
|
56 |
def get_model_answer(chatbot, user_input): |
|
|
57 |
return chatbot.run(user_input, isEval) |
|
|
58 |
|
|
|
59 |
|
|
|
60 |
# Function to interact with chatbot |
|
|
61 |
def chatgpt(input, history): |
|
|
62 |
history = history or [] |
|
|
63 |
output = get_model_answer(chatbot, input) |
|
|
64 |
history.append(output) |
|
|
65 |
return history |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
# Maintain user input history |
|
|
69 |
history_input = [] |
|
|
70 |
if "generated" not in st.session_state: |
|
|
71 |
st.session_state["generated"] = [] |
|
|
72 |
if "past" not in st.session_state: |
|
|
73 |
st.session_state["past"] = [] |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
# Function to get user input |
|
|
77 |
def get_text(): |
|
|
78 |
input_text = st.text_input("You: ", key="input") |
|
|
79 |
return input_text |
|
|
80 |
|
|
|
81 |
|
|
|
82 |
# Main interaction loop |
|
|
83 |
user_input = get_text() |
|
|
84 |
|
|
|
85 |
if user_input: |
|
|
86 |
output = chatgpt(user_input, history_input) |
|
|
87 |
history_input.append(output) |
|
|
88 |
st.session_state.past.append(user_input) |
|
|
89 |
st.session_state.generated.append(output[0]) |
|
|
90 |
|
|
|
91 |
if st.session_state["generated"]: |
|
|
92 |
for i in range(len(st.session_state["generated"]) - 1, -1, -1): |
|
|
93 |
message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs") |
|
|
94 |
message( |
|
|
95 |
st.session_state["past"][i], |
|
|
96 |
is_user=True, |
|
|
97 |
key=str(i) + "_user", |
|
|
98 |
avatar_style="thumbs", |
|
|
99 |
) |