|
a |
|
b/tutorials/2_Labeling.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"id": "43f4d50c-4e7b-4652-9701-be9366ff70c4", |
|
|
6 |
"metadata": {}, |
|
|
7 |
"source": [ |
|
|
8 |
"# Labeling\n", |
|
|
9 |
"\n", |
|
|
10 |
"A core component of FEMR is labeling patients.\n", |
|
|
11 |
"\n", |
|
|
12 |
"Labels within FEMR follow the [label schema within MEDS](https://github.com/Medical-Event-Data-Standard/meds/blob/e93f63a2f9642123c49a31ecffcdb84d877dc54a/src/meds/__init__.py#L70).\n", |
|
|
13 |
"\n", |
|
|
14 |
"Per MEDS, each label consists of three attributes:\n", |
|
|
15 |
"\n", |
|
|
16 |
"* `patient_id` (int64): The identifier for the patient to predict on\n", |
|
|
17 |
"* `prediction_time` (datetime.datetime): The timestamp for when the prediction should be made. This indicates what features are allowed to be used for prediction.\n", |
|
|
18 |
"* `boolean_value` (bool): The target to predict\n", |
|
|
19 |
"\n", |
|
|
20 |
"Additional types of labels will be added to MEDS over time, and then supported here." |
|
|
21 |
] |
|
|
22 |
}, |
|
|
23 |
{ |
|
|
24 |
"cell_type": "code", |
|
|
25 |
"execution_count": 1, |
|
|
26 |
"id": "c6ac5c41-bc99-4731-ad82-7152274c67e1", |
|
|
27 |
"metadata": {}, |
|
|
28 |
"outputs": [], |
|
|
29 |
"source": [ |
|
|
30 |
"import shutil\n", |
|
|
31 |
"import os\n", |
|
|
32 |
"\n", |
|
|
33 |
"TARGET_DIR = 'trash/tutorial_2'\n", |
|
|
34 |
"\n", |
|
|
35 |
"if os.path.exists(TARGET_DIR):\n", |
|
|
36 |
" shutil.rmtree(TARGET_DIR)\n", |
|
|
37 |
"\n", |
|
|
38 |
"os.mkdir(TARGET_DIR)" |
|
|
39 |
] |
|
|
40 |
}, |
|
|
41 |
{ |
|
|
42 |
"cell_type": "markdown", |
|
|
43 |
"id": "7e98dd85", |
|
|
44 |
"metadata": {}, |
|
|
45 |
"source": [ |
|
|
46 |
"# Demonstration of some example labels" |
|
|
47 |
] |
|
|
48 |
}, |
|
|
49 |
{ |
|
|
50 |
"cell_type": "code", |
|
|
51 |
"execution_count": 2, |
|
|
52 |
"id": "8d9e2ccd-71c2-4ae0-897b-7ec022f9fdf4", |
|
|
53 |
"metadata": {}, |
|
|
54 |
"outputs": [ |
|
|
55 |
{ |
|
|
56 |
"name": "stderr", |
|
|
57 |
"output_type": "stream", |
|
|
58 |
"text": [ |
|
|
59 |
"/home/esteinberg/miniconda3/envs/debug_document_femr/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", |
|
|
60 |
" from .autonotebook import tqdm as notebook_tqdm\n" |
|
|
61 |
] |
|
|
62 |
} |
|
|
63 |
], |
|
|
64 |
"source": [ |
|
|
65 |
"# We can construct these labels manually\n", |
|
|
66 |
"\n", |
|
|
67 |
"import femr.labelers\n", |
|
|
68 |
"import datetime\n", |
|
|
69 |
"import meds\n", |
|
|
70 |
"\n", |
|
|
71 |
"# Predict False on March 2nd, 1994\n", |
|
|
72 |
"example_label = {'patient_id': 100, 'prediction_time': datetime.datetime(1994, 3, 2), 'boolean_value': False}\n", |
|
|
73 |
"\n", |
|
|
74 |
"# Predict True on March 2nd, 2009\n", |
|
|
75 |
"example_label2 = {'patient_id': 100, 'prediction_time': datetime.datetime(2009, 3, 2), 'boolean_value': True}\n", |
|
|
76 |
"\n", |
|
|
77 |
"\n", |
|
|
78 |
"# Multiple labels are stored using a list\n", |
|
|
79 |
"labels = [example_label, example_label2]" |
|
|
80 |
] |
|
|
81 |
}, |
|
|
82 |
{ |
|
|
83 |
"cell_type": "markdown", |
|
|
84 |
"id": "e77b1bfc-8d2d-4f79-b855-f90b3a73736e", |
|
|
85 |
"metadata": {}, |
|
|
86 |
"source": [ |
|
|
87 |
"# Generating labels programatically within FEMR\n", |
|
|
88 |
"\n", |
|
|
89 |
"One core feature of FEMR is the ability to algorithmically generate labels through the use of a labeling function class.\n", |
|
|
90 |
"\n", |
|
|
91 |
"The core for FEMR's labeling code is the abstract base class [Labeler](https://github.com/som-shahlab/femr/blob/main/src/femr/labelers/core.py#L40).\n", |
|
|
92 |
"\n", |
|
|
93 |
"Labeler has one abstract methods:\n", |
|
|
94 |
"\n", |
|
|
95 |
"```python\n", |
|
|
96 |
"def label(self, patient: meds.Patient) -> List[meds.Label]:\n", |
|
|
97 |
" Generate a list of labels for a patient\n", |
|
|
98 |
"```\n", |
|
|
99 |
"\n", |
|
|
100 |
"Note that the patient is assumed to be the [MEDS Patient schema](https://github.com/Medical-Event-Data-Standard/meds/blob/e93f63a2f9642123c49a31ecffcdb84d877dc54a/src/meds/__init__.py#L18).\n", |
|
|
101 |
"\n", |
|
|
102 |
"Once this method is implemented, the apply function becomes available for generating labels." |
|
|
103 |
] |
|
|
104 |
}, |
|
|
105 |
{ |
|
|
106 |
"cell_type": "code", |
|
|
107 |
"execution_count": 3, |
|
|
108 |
"id": "9ac22dbe-ef34-468a-8ab3-673e58e5a920", |
|
|
109 |
"metadata": {}, |
|
|
110 |
"outputs": [ |
|
|
111 |
{ |
|
|
112 |
"name": "stderr", |
|
|
113 |
"output_type": "stream", |
|
|
114 |
"text": [ |
|
|
115 |
"Map: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [00:00<00:00, 3040.98 examples/s]" |
|
|
116 |
] |
|
|
117 |
}, |
|
|
118 |
{ |
|
|
119 |
"name": "stdout", |
|
|
120 |
"output_type": "stream", |
|
|
121 |
"text": [ |
|
|
122 |
"{'patient_id': 100, 'prediction_time': datetime.datetime(1992, 7, 15, 0, 0), 'boolean_value': False}\n", |
|
|
123 |
"{'patient_id': 101, 'prediction_time': datetime.datetime(1992, 8, 20, 0, 0), 'boolean_value': False}\n", |
|
|
124 |
"{'patient_id': 102, 'prediction_time': datetime.datetime(1991, 4, 13, 0, 0), 'boolean_value': True}\n", |
|
|
125 |
"{'patient_id': 103, 'prediction_time': datetime.datetime(1990, 10, 19, 0, 0), 'boolean_value': False}\n", |
|
|
126 |
"{'patient_id': 104, 'prediction_time': datetime.datetime(1990, 6, 15, 0, 0), 'boolean_value': True}\n", |
|
|
127 |
"{'patient_id': 105, 'prediction_time': datetime.datetime(1990, 6, 29, 0, 0), 'boolean_value': True}\n", |
|
|
128 |
"{'patient_id': 106, 'prediction_time': datetime.datetime(1992, 5, 25, 0, 0), 'boolean_value': True}\n", |
|
|
129 |
"{'patient_id': 107, 'prediction_time': datetime.datetime(1992, 5, 29, 0, 0), 'boolean_value': False}\n", |
|
|
130 |
"{'patient_id': 108, 'prediction_time': datetime.datetime(1991, 10, 20, 0, 0), 'boolean_value': True}\n", |
|
|
131 |
"{'patient_id': 109, 'prediction_time': datetime.datetime(1991, 6, 25, 0, 0), 'boolean_value': True}\n" |
|
|
132 |
] |
|
|
133 |
}, |
|
|
134 |
{ |
|
|
135 |
"name": "stderr", |
|
|
136 |
"output_type": "stream", |
|
|
137 |
"text": [ |
|
|
138 |
"\n" |
|
|
139 |
] |
|
|
140 |
} |
|
|
141 |
], |
|
|
142 |
"source": [ |
|
|
143 |
"from typing import List\n", |
|
|
144 |
"import femr.pat_utils\n", |
|
|
145 |
"import datasets\n", |
|
|
146 |
"\n", |
|
|
147 |
"class IsMaleLabeler(femr.labelers.Labeler):\n", |
|
|
148 |
" # Dummy labeler to predict gender at birth\n", |
|
|
149 |
" \n", |
|
|
150 |
" def label(self, patient: meds.Patient) -> List[meds.Label]:\n", |
|
|
151 |
" is_male = any('Gender/M' == measurement['code'] for event in patient['events'] for measurement in event['measurements'])\n", |
|
|
152 |
" return [{\n", |
|
|
153 |
" 'patient_id': patient['patient_id'], \n", |
|
|
154 |
" 'prediction_time': femr.pat_utils.get_patient_birthdate(patient),\n", |
|
|
155 |
" 'boolean_value': is_male,\n", |
|
|
156 |
" }]\n", |
|
|
157 |
" \n", |
|
|
158 |
"dataset = datasets.Dataset.from_parquet(\"input/meds/data/*\")\n", |
|
|
159 |
"\n", |
|
|
160 |
"labeler = IsMaleLabeler()\n", |
|
|
161 |
"labeled_patients = labeler.apply(dataset)\n", |
|
|
162 |
"\n", |
|
|
163 |
"for i in range(10):\n", |
|
|
164 |
" print(labeled_patients[100 + i])\n", |
|
|
165 |
"\n" |
|
|
166 |
] |
|
|
167 |
}, |
|
|
168 |
{ |
|
|
169 |
"cell_type": "code", |
|
|
170 |
"execution_count": 4, |
|
|
171 |
"id": "20bd7859", |
|
|
172 |
"metadata": {}, |
|
|
173 |
"outputs": [], |
|
|
174 |
"source": [ |
|
|
175 |
"# We can use pyarrow to save these labels to a csv\n", |
|
|
176 |
"import pyarrow\n", |
|
|
177 |
"import pyarrow.csv\n", |
|
|
178 |
"\n", |
|
|
179 |
"table = pyarrow.Table.from_pylist(labeled_patients, schema=meds.label)\n", |
|
|
180 |
"pyarrow.csv.write_csv(table, \"trash/tutorial_2/labels.csv\")" |
|
|
181 |
] |
|
|
182 |
} |
|
|
183 |
], |
|
|
184 |
"metadata": { |
|
|
185 |
"kernelspec": { |
|
|
186 |
"display_name": "Python 3 (ipykernel)", |
|
|
187 |
"language": "python", |
|
|
188 |
"name": "python3" |
|
|
189 |
}, |
|
|
190 |
"language_info": { |
|
|
191 |
"codemirror_mode": { |
|
|
192 |
"name": "ipython", |
|
|
193 |
"version": 3 |
|
|
194 |
}, |
|
|
195 |
"file_extension": ".py", |
|
|
196 |
"mimetype": "text/x-python", |
|
|
197 |
"name": "python", |
|
|
198 |
"nbconvert_exporter": "python", |
|
|
199 |
"pygments_lexer": "ipython3", |
|
|
200 |
"version": "3.10.14" |
|
|
201 |
} |
|
|
202 |
}, |
|
|
203 |
"nbformat": 4, |
|
|
204 |
"nbformat_minor": 5 |
|
|
205 |
} |