157 lines (156 with data), 5.3 kB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# FEMR Ontology support\n",
"\n",
"FEMR provides support for querying ontologies using the OMOP Vocabulary. \n",
"\n",
"This enables easier definition of labeling functions as well as better feature generation."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Downloading the OMOP Vocabulary\n",
"\n",
"The OMOP Vocabulary can be downloaded for free from the [OHDSI ATHENA website.](https://athena.ohdsi.org/)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Processing the OMOP Vocabulary\n",
"\n",
"femr.ontology.Ontology allows you to process, and then use the OMOP Vocabulary, optionally combining it with [code metadata from MEDS](https://github.com/Medical-Event-Data-Standard/meds/blob/e93f63a2f9642123c49a31ecffcdb84d877dc54a/src/meds/__init__.py#L94).\n",
"\n",
"```python \n",
"ontology = femr.ontology.Ontology(path_to_athena, code_metadata)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Working with an Ontology object\n",
"\n",
"The following code samples illustrate the main ways to use a vocabulary object"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/esteinberg/miniconda3/envs/debug_document_femr/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded ontology\n"
]
}
],
"source": [
"import pickle\n",
"\n",
"# You can load / save ontology objects with pickle\n",
"\n",
"with open('input/meds/ontology.pkl', 'rb') as f:\n",
" ontology = pickle.load(f)\n",
"\n",
"print(\"Loaded ontology\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Generating train split: 200 examples [00:00, 34972.93 examples/s]\n",
"Map: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [00:00<00:00, 3282.29 examples/s]\n"
]
}
],
"source": [
"# Ontology datasets downloaded by Athena tend to be very large as they contain many codes, including several that are no longer used.\n",
"# We therefore provide a function to prune ontologies to a particular dataset of interest.\n",
"# This makes it much cheaper to store and use an ontology object, both in terms of disk space and RAM\n",
"\n",
"import datasets\n",
"dataset = datasets.Dataset.from_parquet(\"input/meds/data/*\")\n",
"\n",
"ontology.prune_to_dataset(dataset)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Description DRUGS FOR PEPTIC ULCER AND GASTRO-OESOPHAGEAL REFLUX DISEASE (GORD)\n",
"Parents {'ATC/A02'}\n",
"Children {'ATC/A02BX'}\n",
"All children {'RxNorm/2344', 'ATC/A02BX', 'RxNorm/4501', 'ATC/A02BX71', 'ATC/A02B', 'RxNorm/7815', 'RxNorm/7019', 'ATC/A02BX77', 'RxNorm/2353', 'RxNorm/8705', 'RxNorm/38574', 'RxNorm/2620', 'RxNorm/2018', 'RxNorm/8704', 'RxNorm/8730', 'RxNorm/6852', 'RxNorm/2017', 'RxNorm/2403'}\n",
"All parents {'ATC/A', 'ATC/A02', 'ATC/A02B'}\n"
]
}
],
"source": [
"# First, we can query the description for a particular code\n",
"print(\"Description\", ontology.get_description(\"ATC/A02B\"))\n",
"\n",
"# Second, we can search for the parents of a particular code\n",
"print(\"Parents\", ontology.get_parents(\"ATC/A02B\"))\n",
"\n",
"# Finally, we can search for the children of a particular code\n",
"print(\"Children\", ontology.get_children(\"ATC/A02B\"))\n",
"\n",
"# For the sake of convience, we also support the recursive versions of querying parents and children\n",
"print(\"All children\", ontology.get_all_children(\"ATC/A02B\"))\n",
"print(\"All parents\", ontology.get_all_parents(\"ATC/A02B\"))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 4
}