[f54d94]: / tests / featurizers / test_featurizers.py

Download this file

347 lines (258 with data), 12.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import datetime
from typing import Any, List, Mapping, cast
import femr_test_tools
import meds
import scipy.sparse
import femr
import femr.index
from femr.featurizers import FeaturizerList
from femr.featurizers.featurizers import AgeFeaturizer, CountFeaturizer
from femr.labelers import TimeHorizon
from femr.labelers.omop import CodeLabeler
def _assert_featurized_patients_structure(labels: List[meds.Label], features: Mapping[str, Any]):
assert features["features"].dtype == "float32"
assert features["patient_ids"].dtype == "int64"
assert features["feature_times"].dtype == "datetime64[us]"
assert features["feature_times"].shape[0] == len(labels)
assert features["patient_ids"].shape[0] == len(labels)
assert features["features"].shape[0] == len(labels)
assert sorted(list(features["patient_ids"])) == sorted(list(label["patient_id"] for label in labels))
assert sorted(list(features["feature_times"])) == sorted(list(label["prediction_time"] for label in labels))
def test_age_featurizer() -> None:
time_horizon = TimeHorizon(datetime.timedelta(days=0), datetime.timedelta(days=180))
dataset = femr_test_tools.create_patients_dataset(100)
index = femr.index.PatientIndex(dataset)
labeler = CodeLabeler(["2"], time_horizon, ["3"])
patient: meds.Patient = dataset[0]
labels = labeler.label(patient)
featurizer = AgeFeaturizer(is_normalize=False)
patient_features = featurizer.featurize(patient, labels)
assert patient_features[0] == [(0, 15.43013698630137)]
assert patient_features[1] == [(0, 17.767123287671232)]
assert patient_features[-1] == [(0, 20.46027397260274)]
all_labels = labeler.apply(dataset)
featurizer = AgeFeaturizer(is_normalize=True)
featurizer_list = FeaturizerList([featurizer])
featurizer_list.preprocess_featurizers(dataset, index, all_labels)
featurized_patients = featurizer_list.featurize(dataset, index, all_labels)
_assert_featurized_patients_structure(all_labels, featurized_patients)
def test_count_featurizer() -> None:
time_horizon = TimeHorizon(datetime.timedelta(days=0), datetime.timedelta(days=180))
dataset = femr_test_tools.create_patients_dataset(100)
index = femr.index.PatientIndex(dataset)
labeler = CodeLabeler(["2"], time_horizon, ["3"])
patient: meds.Patient = dataset[0]
labels = labeler.label(patient)
featurizer = CountFeaturizer()
data = featurizer.generate_preprocess_data([patient], {patient["patient_id"]: labels})
featurizer.encorperate_prepreprocessed_data([data])
patient_features = featurizer.featurize(patient, labels)
assert featurizer.get_num_columns() == 4, f"featurizer.get_num_columns() = {featurizer.get_num_columns()}"
simple_patient_features = [{(featurizer.get_column_name(v.column), v.value) for v in a} for a in patient_features]
assert simple_patient_features[0] == {
("SNOMED/184099003", 1),
("3", 1),
}
assert simple_patient_features[1] == {
("SNOMED/184099003", 1),
("3", 2),
("2", 2),
}
assert simple_patient_features[2] == {
("SNOMED/184099003", 1),
("3", 3),
("2", 4),
}
all_labels = labeler.apply(dataset)
featurizer = CountFeaturizer()
featurizer_list = FeaturizerList([featurizer])
featurizer_list.preprocess_featurizers(dataset, index, all_labels)
featurized_patients = featurizer_list.featurize(dataset, index, all_labels)
_assert_featurized_patients_structure(all_labels, featurized_patients)
def test_count_featurizer_with_ontology() -> None:
time_horizon = TimeHorizon(datetime.timedelta(days=0), datetime.timedelta(days=180))
dataset = femr_test_tools.create_patients_dataset(100)
index = femr.index.PatientIndex(dataset)
labeler = CodeLabeler(["2"], time_horizon, ["3"])
patient: meds.Patient = dataset[0]
labels = labeler.label(patient)
class DummyOntology:
def get_all_parents(self, code):
if code in ("2", "SNOMED/184099003"):
return {"parent", code}
else:
return {code}
featurizer = CountFeaturizer(is_ontology_expansion=True, ontology=cast(femr.ontology.Ontology, DummyOntology()))
data = featurizer.generate_preprocess_data([patient], {patient["patient_id"]: labels})
featurizer.encorperate_prepreprocessed_data([data])
patient_features = featurizer.featurize(patient, labels)
assert featurizer.get_num_columns() == 5, f"featurizer.get_num_columns() = {featurizer.get_num_columns()}"
simple_patient_features = [{(featurizer.get_column_name(v.column), v.value) for v in a} for a in patient_features]
assert simple_patient_features[0] == {
("SNOMED/184099003", 1),
("3", 1),
("parent", 1),
}
assert simple_patient_features[1] == {
("SNOMED/184099003", 1),
("3", 2),
("2", 2),
("parent", 3),
}
assert simple_patient_features[2] == {
("SNOMED/184099003", 1),
("parent", 5),
("3", 3),
("2", 4),
}
all_labels = labeler.apply(dataset)
featurizer = CountFeaturizer(is_ontology_expansion=True, ontology=cast(femr.ontology.Ontology, DummyOntology()))
featurizer_list = FeaturizerList([featurizer])
featurizer_list.preprocess_featurizers(dataset, index, all_labels)
featurized_patients = featurizer_list.featurize(dataset, index, all_labels)
_assert_featurized_patients_structure(all_labels, featurized_patients)
def test_count_featurizer_with_values() -> None:
time_horizon = TimeHorizon(datetime.timedelta(days=0), datetime.timedelta(days=180))
dataset = femr_test_tools.create_patients_dataset(100)
index = femr.index.PatientIndex(dataset)
labeler = CodeLabeler(["2"], time_horizon, ["3"])
patient: meds.Patient = dataset[0]
labels = labeler.label(patient)
featurizer = CountFeaturizer(numeric_value_decile=True, string_value_combination=True)
data = featurizer.generate_preprocess_data([patient], {patient["patient_id"]: labels})
featurizer.encorperate_prepreprocessed_data([data])
patient_features = featurizer.featurize(patient, labels)
assert featurizer.get_num_columns() == 7
simple_patient_features = [{(featurizer.get_column_name(v.column), v.value) for v in a} for a in patient_features]
assert simple_patient_features[0] == {
("SNOMED/184099003", 1),
("3", 1),
("2 [1.0, inf)", 1),
("1 test_value", 2),
}
assert simple_patient_features[1] == {
("SNOMED/184099003", 1),
("3", 2),
("2", 2),
("2 [1.0, inf)", 1),
("1 test_value", 2),
}
assert simple_patient_features[2] == {
("SNOMED/184099003", 1),
("3", 3),
("2", 4),
("2 [1.0, inf)", 1),
("1 test_value", 2),
}
all_labels = labeler.apply(dataset)
featurizer = CountFeaturizer(numeric_value_decile=True, string_value_combination=True)
featurizer_list = FeaturizerList([featurizer])
featurizer_list.preprocess_featurizers(dataset, index, all_labels)
featurized_patients = featurizer_list.featurize(dataset, index, all_labels)
_assert_featurized_patients_structure(all_labels, featurized_patients)
def test_count_featurizer_exclude_filter() -> None:
time_horizon = TimeHorizon(datetime.timedelta(days=0), datetime.timedelta(days=180))
dataset = femr_test_tools.create_patients_dataset(100)
labeler = CodeLabeler(["2"], time_horizon, ["3"])
patient: meds.Patient = dataset[0]
labels = labeler.label(patient)
# Test filtering all codes
featurizer = CountFeaturizer(excluded_event_filter=lambda _: True)
data = featurizer.generate_preprocess_data([patient], {patient["patient_id"]: labels})
featurizer.encorperate_prepreprocessed_data([data])
assert featurizer.get_num_columns() == 0
# Test filtering no codes
featurizer = CountFeaturizer(excluded_event_filter=lambda _: False)
data = featurizer.generate_preprocess_data([patient], {patient["patient_id"]: labels})
featurizer.encorperate_prepreprocessed_data([data])
assert featurizer.get_num_columns() == 4
# Test filtering single code
featurizer = CountFeaturizer(excluded_event_filter=lambda e: e["code"] == "3")
data = featurizer.generate_preprocess_data([patient], {patient["patient_id"]: labels})
featurizer.encorperate_prepreprocessed_data([data])
assert featurizer.get_num_columns() == 3
def test_count_bins_featurizer() -> None:
time_horizon = TimeHorizon(datetime.timedelta(days=0), datetime.timedelta(days=180))
dataset = femr_test_tools.create_patients_dataset(100)
index = femr.index.PatientIndex(dataset)
labeler = CodeLabeler(["2"], time_horizon, ["3"])
patient: meds.Patient = dataset[0]
labels = labeler.label(patient)
time_bins = [
datetime.timedelta(days=90),
datetime.timedelta(days=180),
datetime.timedelta(weeks=1e4),
]
featurizer = CountFeaturizer(
time_bins=time_bins,
)
data = featurizer.generate_preprocess_data([patient], {patient["patient_id"]: labels})
featurizer.encorperate_prepreprocessed_data([data])
patient_features = featurizer.featurize(patient, labels)
assert featurizer.get_num_columns() == 12
simple_patient_features = [{(featurizer.get_column_name(v.column), v.value) for v in a} for a in patient_features]
assert simple_patient_features[0] == {
("SNOMED/184099003_70000 days, 0:00:00", 1),
("3_90 days, 0:00:00", 1),
}
assert simple_patient_features[1] == {
("3_90 days, 0:00:00", 1),
("SNOMED/184099003_70000 days, 0:00:00", 1),
("3_70000 days, 0:00:00", 1),
("2_70000 days, 0:00:00", 2),
}
assert simple_patient_features[2] == {
("2_70000 days, 0:00:00", 2),
("2_90 days, 0:00:00", 2),
("SNOMED/184099003_70000 days, 0:00:00", 1),
("3_90 days, 0:00:00", 1),
("3_70000 days, 0:00:00", 2),
}
all_labels = labeler.apply(dataset)
time_bins = [
datetime.timedelta(days=90),
datetime.timedelta(days=180),
datetime.timedelta(weeks=1e4),
]
featurizer = CountFeaturizer(
time_bins=time_bins,
)
featurizer_list = FeaturizerList([featurizer])
featurizer_list.preprocess_featurizers(dataset, index, all_labels)
featurized_patients = featurizer_list.featurize(dataset, index, all_labels)
_assert_featurized_patients_structure(all_labels, featurized_patients)
def test_complete_featurization() -> None:
time_horizon = TimeHorizon(datetime.timedelta(days=0), datetime.timedelta(days=180))
dataset = femr_test_tools.create_patients_dataset(100)
index = femr.index.PatientIndex(dataset)
labeler = CodeLabeler(["2"], time_horizon, ["3"])
all_labels = labeler.apply(dataset)
age_featurizer = AgeFeaturizer(is_normalize=True)
age_featurizer_list = FeaturizerList([age_featurizer])
age_featurizer_list.preprocess_featurizers(dataset, index, all_labels)
age_featurized_patients = age_featurizer_list.featurize(dataset, index, all_labels)
time_bins = [
datetime.timedelta(days=90),
datetime.timedelta(days=180),
datetime.timedelta(weeks=1e5),
]
count_featurizer = CountFeaturizer(time_bins=time_bins)
count_featurizer_list = FeaturizerList([count_featurizer])
count_featurizer_list.preprocess_featurizers(dataset, index, all_labels)
count_featurized_patients = count_featurizer_list.featurize(dataset, index, all_labels)
age_featurizer = AgeFeaturizer(is_normalize=True)
time_bins = [
datetime.timedelta(days=90),
datetime.timedelta(days=180),
datetime.timedelta(weeks=1e5),
]
count_featurizer = CountFeaturizer(time_bins=time_bins)
featurizer_list = FeaturizerList([age_featurizer, count_featurizer])
featurizer_list.preprocess_featurizers(dataset, index, all_labels)
featurized_patients = featurizer_list.featurize(dataset, index, all_labels)
assert featurized_patients["patient_ids"].shape == count_featurized_patients["patient_ids"].shape
the_same = (
featurized_patients["features"].toarray()
== scipy.sparse.hstack((age_featurized_patients["features"], count_featurized_patients["features"])).toarray()
)
assert the_same.all()