[dec218]: / dataset_builder / preprocess_label.py

Download this file

550 lines (445 with data), 26.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import os
import json
import argparse
import numpy as np
import pandas as pd
# from tqdm import tqdm
def config():
parser = argparse.ArgumentParser(description="preprocessing label information")
# debug
parser.add_argument("--debug", action="store_true", help="debug mode")
parser.add_argument("--debug_nrows", default=100000, type=int, help="debug mode - nrows")
# file directory
parser.add_argument("--save_dir", default="./preprocessed_data", type=str)
parser.add_argument("--mimic_cxr_jpg_dir", default="../mimic-cxr-jpg/", type=str)
parser.add_argument("--chest_imagenome_dir", default="../chest-imagenome/", type=str)
args = parser.parse_args()
return args
class LabelPreprocessor:
def __init__(
self,
args,
):
self.args = args
# check debug
self.nrows = args.debug_nrows if args.debug else None
# load
self._load_silver_attributes_relations()
self._load_gold_attributes_relations()
self._load_and_modify_chest_imagenome_ontology()
def _load_silver_attributes_relations(self):
# read
silver_attributes_relations = pd.read_csv(
os.path.join(self.args.chest_imagenome_dir, "silver_dataset/scene_tabular/attribute_relations_tabular.txt"),
sep="\t",
# usecols=None,
)
self.silver_attributes_relations = silver_attributes_relations
# arrange
silver_dataset = silver_attributes_relations.copy()
silver_dataset["image_id"] = silver_dataset["image_id"].str.replace(".dcm", "")
silver_dataset["object_id"] = silver_dataset["image_id"] + "_" + silver_dataset["bbox"]
silver_dataset["sent_loc"] = silver_dataset["row_id"].apply(lambda x: float(x.split("|")[-1]))
silver_dataset["annot_id"] = (
silver_dataset["study_id"].astype(str) + "|" + silver_dataset["bbox"] + "|" + silver_dataset["relation"].astype(str) + "|" + silver_dataset["label_name"]
) # erase sent_loc
silver_dataset = silver_dataset[["study_id", "image_id", "sent_loc", "bbox", "relation", "label_name", "categoryID", "annot_id", "object_id"]]
self.silver_dataset = silver_dataset.reset_index(drop=True)
def _load_gold_attributes_relations(self):
# read
gold_attributes_relations = pd.read_csv(
os.path.join(self.args.chest_imagenome_dir, "gold_dataset/gold_attributes_relations_500pts_500studies1st.txt"),
sep="\t",
# usecols=None,
)
self.gold_attributes_relations = gold_attributes_relations
# arrange
gold_dataset = gold_attributes_relations.copy()
gold_dataset["image_id"] = gold_dataset["image_id"].str.replace(".dcm", "")
gold_dataset["object_id"] = gold_dataset["image_id"] + "_" + gold_dataset["bbox"]
gold_dataset["sent_loc"] = gold_dataset["row_id"].apply(lambda x: float(x.split("|")[-1]))
gold_dataset["annot_id"] = gold_dataset["study_id"].astype(str) + "|" + gold_dataset["bbox"] + "|" + gold_dataset["relation"].astype(str) + "|" + gold_dataset["label_name"] # erase sent_loc
gold_dataset = gold_dataset[["study_id", "image_id", "sent_loc", "bbox", "relation", "label_name", "categoryID", "annot_id", "object_id"]]
self.gold_dataset = gold_dataset.reset_index(drop=True)
def _load_and_modify_chest_imagenome_ontology(self):
target_categories = ["anatomicalfinding", "technicalassessment", "disease", "tubesandlines", "device"] # nlp
# object list: 38 objects in total
with open(os.path.join(self.args.chest_imagenome_dir, "semantics/objects_extracted_from_reports_v1.txt"), "r") as f:
obj_v1 = [line.strip().replace(",", "") for line in f.readlines()]
print(f"chest imagenome ontology - {len(obj_v1)} objects loaded: {obj_v1}")
# attribute list: 76 attributes in total
# anatomicalfinding(43), technicalassessment(5), disease(10), tubesandlines (12), device (5)
with open(os.path.join(self.args.chest_imagenome_dir, "semantics/attribute_relations_v1.txt"), "r") as f:
cat_attr_v1 = {}
for line in f.readlines():
cat, rel, attr = line.strip().replace(",", "").split("|")
if cat in target_categories:
if cat not in cat_attr_v1:
cat_attr_v1[cat] = []
cat_attr_v1[cat] += [attr]
attr_v1 = [vv for v in cat_attr_v1.values() for vv in v]
attr_v1.remove("sternotomy wires")
print(f"chest imagenome ontology - {len(attr_v1)} attributes loaded: {attr_v1}")
attr_cat_v1 = {}
for k, v in cat_attr_v1.items():
for vv in v:
attr_cat_v1[vv] = k
# load ontology
with open(os.path.join(self.args.chest_imagenome_dir, "semantics/label_to_UMLS_mapping.json"), "r") as f:
ont = json.load(f)
# NOTE: modify ontology
# added; new obj-obj p2c ontology
ont["all_children"]["lungs"] += [
"hilar structures",
"right hilar structures",
"left hilar structures",
# "main stem bronchus",
# "left main stem bronchus",
# "right main stem bronchus",
]
ont["all_children"]["left lung"] += [
"left hilar structures",
]
ont["all_children"]["right lung"] += [
"right hilar structures",
]
ont["all_children"]["hilar structures"] = [
"right hilar structures",
"left hilar structures",
]
ont["all_children"]["mediastinum"] += [
"aortic arch",
"svc",
]
# build attr-attr p2c ontology
attr_p2c_map = {}
for parent, childs in ont["all_children"].items():
if parent in attr_v1:
attr_p2c_map[parent] = [child for child in childs if child in attr_v1]
# build attr-attr c2p ontology (reversed)
attr_c2p_map = {}
for parent, childs in attr_p2c_map.items():
for child in childs:
if child not in attr_c2p_map:
attr_c2p_map[child] = []
attr_c2p_map[child].append(parent)
# build obj-obj p2c ontology
obj_p2c_map = {}
for parent, childs in ont["all_children"].items():
if parent in obj_v1:
new_childs = [child for child in childs if child in obj_v1]
if len(new_childs) > 0:
obj_p2c_map[parent] = new_childs
# build obj-obj c2p ontology
obj_c2p_map = {}
for parent, childs in obj_p2c_map.items():
for child in childs:
if child in obj_c2p_map.keys():
obj_c2p_map[child].append(parent)
else:
obj_c2p_map[child] = [parent]
# NOTE: modify ontology
# added: obj-attr possible relationship w/ obj-obj p2c ontology
for k, v in ont["possible_attribute_of"].items():
for child in obj_c2p_map:
parents = obj_c2p_map[child]
for parent in parents:
if (child in v) and (k in attr_v1):
if parent not in v:
ont["possible_attribute_of"][k] += [parent]
print(f"{k}-{child} \t => {k}-{parent}")
# NOTE: modify ontology
# added: obj-attr possible relationship w/ attr-attr p2c ontology
for kc in ont["possible_attribute_of"].keys():
if kc in attr_c2p_map:
kps = attr_c2p_map[kc]
for kp in kps:
vc = ont["possible_attribute_of"][kc]
vp = ont["possible_attribute_of"][kp]
vc_diff_vp = set(vc) - set(vp)
# vp_diff_vc = set(vp) - set(vc)
if len(vc_diff_vp) > 0:
ont["possible_attribute_of"][kp] += list(vc_diff_vp)
print(f"{kc}:{vc_diff_vp} \t => {kp}+={vc_diff_vp}")
# list
self.obj_v1 = obj_v1
self.attr_v1 = attr_v1
# cat-attr
self.cat_attr_v1 = cat_attr_v1
self.attr_cat_v1 = attr_cat_v1
# p2c
self.attr_p2c_map = attr_p2c_map
self.attr_c2p_map = attr_c2p_map
self.obj_p2c_map = obj_p2c_map
self.obj_c2p_map = obj_c2p_map
# full ont
self.ont = ont
def get_dataset_by_flag(self, flag="silver"):
datasets = {
"silver": self.silver_dataset,
"gold": self.gold_dataset,
"gold+": self.gold_dataset,
}
if flag not in datasets:
raise ValueError("flag must be either 'silver', 'gold', or 'gold+'")
dataset = datasets[flag].copy()
return dataset
def keep_dataset_by_flag(self, dataset, flag="silver"):
if flag not in ["silver", "gold", "gold+"]:
raise ValueError("flag must be either 'silver', 'gold', or 'gold+'")
if flag == "silver":
self.silver_dataset = dataset
else:
self.gold_dataset = dataset
def preprocessLabel_category(self, flag="silver"):
dataset = self.get_dataset_by_flag(flag)
dataset = dataset[dataset["categoryID"] != "nlp"]
assert "normal" not in dataset.label_name.unique()
assert "abnormal" not in dataset.label_name.unique()
dataset = dataset.reset_index(drop=True)
self.keep_dataset_by_flag(dataset, flag)
def preprocessLabel_bbox(self, flag="silver"):
dataset = self.get_dataset_by_flag(flag)
dataset = dataset[dataset["bbox"] != "unknown"]
dataset = dataset.reset_index(drop=True)
self.keep_dataset_by_flag(dataset, flag)
def preprocessLabel_cohort(self, flag="silver"):
if flag == "silver":
silver_dataset = self.silver_dataset.copy()
silver_cohort = pd.read_csv(
os.path.join(self.args.save_dir, f"cohort_silver.csv"),
)
silver_iids = silver_cohort["image_id"].unique()
silver_dataset = silver_dataset[silver_dataset.image_id.isin(silver_iids)]
silver_dataset["subject_id"] = silver_dataset["image_id"].map(silver_cohort.set_index("image_id")["subject_id"])
silver_dataset["subject_id"] = silver_dataset["subject_id"].astype(int)
assert silver_dataset["subject_id"].isna().sum() == 0
silver_dataset = silver_dataset[["subject_id", "study_id", "image_id", "sent_loc", "bbox", "relation", "label_name", "categoryID", "annot_id", "object_id"]]
self.silver_dataset = silver_dataset.reset_index(drop=True)
elif flag == "gold":
gold_dataset = self.gold_dataset.copy()
gold_cohort = pd.read_csv(
os.path.join(self.args.save_dir, f"cohort_gold.csv"),
)
gold_iids = gold_cohort["image_id"].unique()
gold_dataset = gold_dataset[gold_dataset["image_id"].isin(gold_iids)]
assert len(gold_dataset["image_id"].unique()) == 500
gold_dataset["subject_id"] = gold_dataset["image_id"].map(gold_cohort.set_index("image_id")["subject_id"])
gold_dataset["subject_id"] = gold_dataset["subject_id"].astype(int)
assert gold_dataset["subject_id"].isna().sum() == 0
gold_dataset = gold_dataset[["subject_id", "study_id", "image_id", "sent_loc", "bbox", "relation", "label_name", "categoryID", "annot_id", "object_id"]]
self.gold_dataset = gold_dataset.reset_index(drop=True)
elif flag == "gold+":
gold_dataset = self.gold_dataset.copy()
gold_cohort = pd.read_csv(
os.path.join(self.args.save_dir, f"cohort_gold.csv"),
)
gold_iids = gold_cohort["image_id"].unique() # 2338 images
gold_dataset = gold_dataset[gold_dataset["image_id"].isin(gold_iids)] # 500 images
assert len(gold_dataset["image_id"].unique()) == 500
# NOTE: For studies where order >= 2, we use the silver labels
# the pre-processing code of silver dataset (until here) should be run again
self._load_silver_attributes_relations()
self.preprocessLabel_category(flag="silver")
self.preprocessLabel_bbox(flag="silver")
silver_dataset = self.silver_dataset.copy()
silver_dataset = silver_dataset[(~silver_dataset["image_id"].isin(gold_dataset.image_id.unique())) & (silver_dataset["image_id"].isin(gold_iids))]
# The number of images of gold patients w/ 1st study (in cohort_gold.csv)
print("# of images for gold patients w/ 1st study", gold_dataset["image_id"].nunique())
# The number of images of gold patients w/ >=2nd study (in cohort_gold.csv)
print("# of images for gold patients w/ >=2nd study", gold_cohort[gold_cohort["StudyOrder"] >= 2]["image_id"].nunique())
# The number of images of gold patients w/ >=2nd study (in silver_dataset.csv ~ attribute_relations_tabular.txt)
print("# of images for gold patients w/ >=2nd study with silver labels", silver_dataset["image_id"].nunique())
print("NOTE: Some gold studies (>=2nd) are missing in the silver dataset!!!")
gold_dataset = pd.concat([gold_dataset, silver_dataset], axis=0)
gold_dataset["subject_id"] = gold_dataset["image_id"].map(gold_cohort.set_index("image_id")["subject_id"])
gold_dataset["subject_id"] = gold_dataset["subject_id"].astype(int)
assert gold_dataset["subject_id"].isna().sum() == 0
gold_dataset = gold_dataset[["subject_id", "study_id", "image_id", "sent_loc", "bbox", "relation", "label_name", "categoryID", "annot_id", "object_id"]]
self.gold_dataset = gold_dataset.reset_index(drop=True)
print(gold_dataset.head())
else:
raise ValueError("flag must be either 'silver' or 'gold'")
def aggregate_labels_by_report_level(self, flag="silver", agg_option="last"):
sort_columns = ["subject_id", "study_id", "image_id", "sent_loc", "bbox", "label_name"]
agg_columns = ["subject_id", "study_id", "image_id", "bbox", "label_name"]
dataset = self.get_dataset_by_flag(flag)
dataset = dataset.sort_values(by=sort_columns)
dataset = dataset.drop_duplicates(subset=agg_columns, keep=agg_option)
dataset = dataset.reset_index(drop=True)
self.keep_dataset_by_flag(dataset, flag)
def apply_attribute_p2c_ontology_to_dataset(self, flag="silver"):
def _apply_attribute_p2c_ontology_to_dataset(dataset, attr_c2p_map, attr_cat_v1):
sort_columns = ["subject_id", "study_id", "image_id", "sent_loc", "bbox", "label_name"]
agg_columns = ["subject_id", "study_id", "image_id", "bbox", "label_name"]
agg_option = "last"
dataset_parents = None
for child, parents in attr_c2p_map.items():
for parent in parents:
dataset_parent = dataset[dataset.label_name == child].copy()
dataset_parent["label_name"] = parent
dataset_parent["categoryID"] = attr_cat_v1[parent]
dataset_parent["annot_id"] = (
dataset_parent["study_id"].astype(str) + "|" + dataset_parent["bbox"] + "|" + dataset_parent["relation"].astype(str) + "|" + dataset_parent["label_name"]
)
dataset_parents = pd.concat([dataset_parents, dataset_parent], axis=0) if dataset_parents is not None else dataset_parent
dataset = pd.concat([dataset, dataset_parents], axis=0)
dataset = dataset.sort_values(by=sort_columns)
dataset = dataset.drop_duplicates(subset=agg_columns, keep=agg_option)
return dataset
dataset = self.get_dataset_by_flag(flag)
dataset = _apply_attribute_p2c_ontology_to_dataset(dataset=dataset, attr_c2p_map=self.attr_c2p_map, attr_cat_v1=self.attr_cat_v1)
dataset = dataset.reset_index(drop=True)
self.keep_dataset_by_flag(dataset, flag)
def apply_object_p2c_ontology_to_dataset(self, flag="silver"):
def _apply_object_p2c_ontology_to_dataset(dataset, obj_c2p_map):
sort_columns = ["subject_id", "study_id", "image_id", "sent_loc", "bbox", "label_name"]
agg_columns = ["subject_id", "study_id", "image_id", "bbox", "label_name"]
agg_option = "last"
dataset_parents = None
for child, parents in obj_c2p_map.items():
for parent in parents:
dataset_parent = dataset[dataset.bbox == child].copy()
dataset_parent["bbox"] = parent
dataset_parent["annot_id"] = (
dataset_parent["study_id"].astype(str) + "|" + dataset_parent["bbox"] + "|" + dataset_parent["relation"].astype(str) + "|" + dataset_parent["label_name"]
)
dataset_parent["object_id"] = dataset_parent["image_id"] + "_" + dataset_parent["bbox"]
dataset_parents = pd.concat([dataset_parents, dataset_parent], axis=0) if dataset_parents is not None else dataset_parent
dataset = pd.concat([dataset, dataset_parents], axis=0)
dataset = dataset.sort_values(by=sort_columns)
dataset = dataset.drop_duplicates(subset=agg_columns, keep=agg_option)
return dataset
dataset = self.get_dataset_by_flag(flag)
dataset = _apply_object_p2c_ontology_to_dataset(dataset=dataset, obj_c2p_map=self.obj_c2p_map)
dataset = dataset.reset_index(drop=True)
self.keep_dataset_by_flag(dataset, flag)
def apply_object_attribute_possible_relationship_to_dataset(self, flag="silver"):
def _apply_object_attribute_possible_relationship_to_dataset(dataset, ont):
removed_annot_ids = []
obj_attr_combs = dataset[["bbox", "label_name"]].drop_duplicates().values
for obj_attr_comb in obj_attr_combs:
obj, attr = obj_attr_comb
if attr not in ["abnormal", "normal", "artifact"]:
possible_objs = ont["possible_attribute_of"][attr]
if obj not in possible_objs:
removed_annot_ids += dataset[(dataset["bbox"] == obj) & (dataset["label_name"] == attr)].annot_id.tolist()
dataset = dataset[~dataset.annot_id.isin(removed_annot_ids)]
return dataset
dataset = self.get_dataset_by_flag(flag)
dataset = _apply_object_attribute_possible_relationship_to_dataset(dataset=dataset, ont=self.ont)
dataset = dataset.reset_index(drop=True)
self.keep_dataset_by_flag(dataset, flag)
def sanity_check(self, flag="silver"):
if flag == "silver":
dataset = self.silver_dataset
elif flag in ["gold", "gold+"]:
dataset = self.gold_dataset
else:
raise ValueError("flag must be either 'silver' or 'gold'")
assert (dataset.object_id.apply(lambda x: x.split("_")[-1]) != dataset.bbox).sum() == 0
assert (dataset.object_id.apply(lambda x: x.split("_")[0]) != dataset.image_id).sum() == 0
assert (dataset.annot_id.apply(lambda x: x.split("|")[0]) != dataset.study_id.astype(str)).sum() == 0
assert (dataset.annot_id.apply(lambda x: x.split("|")[1]) != dataset.bbox).sum() == 0
assert (dataset.annot_id.apply(lambda x: x.split("|")[2]) != dataset.relation.astype(str)).sum() == 0
assert (dataset.annot_id.apply(lambda x: x.split("|")[-1]) != dataset.label_name).sum() == 0
def remove_minority_label(self, flag="silver"):
REMOVED_OBJS = ["left arm", "right arm"]
REMOVED_ATTRS = [
"artifact",
"bronchiectasis",
"pigtail catheter",
"skin fold",
"aortic graft/repair",
"diaphragmatic eventration (benign)",
"sternotomy wires",
]
dataset = self.get_dataset_by_flag(flag)
dataset = dataset[(~dataset["bbox"].isin(REMOVED_OBJS)) & (~dataset["label_name"].isin(REMOVED_ATTRS))]
dataset = dataset.reset_index(drop=True)
self.keep_dataset_by_flag(dataset, flag)
def restore_normal_relation(self, flag="silver"):
sort_columns = ["subject_id", "study_id", "image_id", "bbox", "label_name", "relation"]
agg_columns = ["subject_id", "study_id", "image_id", "bbox", "label_name"]
agg_option = "last"
# compute possible object-attribute combinations (in here, a total of 609 combinations)
objattr_combs = [(vv, 0, k, self.attr_cat_v1[k]) for k, v in self.ont["possible_attribute_of"].items() if k in self.attr_v1 for vv in v if vv in self.obj_v1]
objattr_combs = pd.DataFrame(objattr_combs, columns=["bbox", "relation", "label_name", "categoryID"])
dataset = self.get_dataset_by_flag(flag)
all_data = pd.merge(dataset[["subject_id", "study_id", "image_id"]].drop_duplicates().assign(key=1), objattr_combs.assign(key=1), on="key").drop("key", axis=1)
all_data["annot_id"] = all_data["study_id"].astype(str) + "|" + all_data["bbox"] + "|" + all_data["relation"].astype(str) + "|" + all_data["label_name"]
all_data["object_id"] = all_data["image_id"] + "_" + all_data["bbox"]
dataset = pd.concat([dataset, all_data])
dataset = dataset.sort_values(by=sort_columns, ascending=True)
dataset = dataset.drop_duplicates(subset=agg_columns, keep=agg_option)
dataset = dataset.reset_index(drop=True)
self.keep_dataset_by_flag(dataset, flag)
def save_label_dataset(self, flag="silver"):
dataset = self.get_dataset_by_flag(flag)
dataset.to_csv(os.path.join(self.args.save_dir, f"{flag}_dataset.csv"), index=False)
print(f"{flag} dataset saved, shape: {dataset.shape}")
def split_and_save_dataset(self):
from sklearn.model_selection import train_test_split
# 0
# gold_dataset = self.gold_dataset
# silver_dataset = self.silver_dataset
# To avoid the problem of the order of the dataset, we load the dataset from the saved csv file.
gold_dataset = pd.read_csv(os.path.join(self.args.save_dir, "gold_dataset.csv"))
silver_dataset = pd.read_csv(os.path.join(self.args.save_dir, "silver_dataset.csv"))
# 1: divide by relation type
silver_dataset_abn = silver_dataset[silver_dataset["relation"] == 1]
silver_dataset_nm = silver_dataset[~silver_dataset.study_id.isin(silver_dataset_abn.study_id.unique())]
SEED = 103
TEST_SIZE = 0.05
# 2: split subject_ids (train, valid)
train_subject_ids_abn = silver_dataset_abn.subject_id.unique()
train_subject_ids_abn, valid_subject_ids_abn = train_test_split(train_subject_ids_abn, test_size=TEST_SIZE, random_state=SEED)
train_subject_ids_nm = silver_dataset_nm.subject_id.unique()
train_subject_ids_nm, valid_subject_ids_nm = train_test_split(train_subject_ids_nm, test_size=TEST_SIZE, random_state=SEED)
train_sids = (
silver_dataset_abn[silver_dataset_abn.subject_id.isin(train_subject_ids_abn)].study_id.unique().tolist()
+ silver_dataset_nm[silver_dataset_nm.subject_id.isin(train_subject_ids_nm)].study_id.unique().tolist()
)
valid_sids = (
silver_dataset_abn[silver_dataset_abn.subject_id.isin(valid_subject_ids_abn)].study_id.unique().tolist()
+ silver_dataset_nm[silver_dataset_nm.subject_id.isin(valid_subject_ids_nm)].study_id.unique().tolist()
)
train_dataset = silver_dataset.loc[silver_dataset["study_id"].isin(train_sids)]
valid_dataset = silver_dataset.loc[silver_dataset["study_id"].isin(valid_sids)]
# test_dataset = gold_dataset.loc[gold_dataset["study_id"].isin(test_sids)]
test_dataset = gold_dataset.copy()
# 3: save
train_dataset = train_dataset.reset_index(drop=True)
valid_dataset = valid_dataset.reset_index(drop=True)
test_dataset = test_dataset.reset_index(drop=True)
train_dataset.to_csv(os.path.join(self.args.save_dir, "train_dataset.csv"), index=False) # silver
valid_dataset.to_csv(os.path.join(self.args.save_dir, "valid_dataset.csv"), index=False) # silver
test_dataset.to_csv(os.path.join(self.args.save_dir, "test_dataset.csv"), index=False) # gold
print("silver, gold dataset -> train, valid, test dataset saved")
def main(args):
# load preprocessor
label_preproc = LabelPreprocessor(args)
FLAGS = ["silver", "gold", "gold+"]
# FLAGS = ["gold+"]
for flag in FLAGS:
# preprocessing - labels
label_preproc.preprocessLabel_category(flag=flag)
label_preproc.preprocessLabel_bbox(flag=flag)
label_preproc.preprocessLabel_cohort(flag=flag)
label_preproc.aggregate_labels_by_report_level(flag=flag, agg_option="last")
# preprocessing - ontology
label_preproc.apply_attribute_p2c_ontology_to_dataset(flag=flag)
label_preproc.apply_object_p2c_ontology_to_dataset(flag=flag)
label_preproc.apply_object_attribute_possible_relationship_to_dataset(flag=flag)
label_preproc.sanity_check(flag=flag)
# preprocessing
label_preproc.remove_minority_label(flag=flag)
label_preproc.restore_normal_relation(flag=flag)
# save
label_preproc.save_label_dataset(flag=flag)
if "silver" in FLAGS and "gold" in FLAGS:
label_preproc.split_and_save_dataset()
if __name__ == "__main__":
args = config()
main(args)
print("Done")