[dec218]: / dataset_builder / preprocess_cohort.py

Download this file

286 lines (238 with data), 11.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import argparse
import numpy as np
import pandas as pd
# from tqdm import tqdm
def config():
parser = argparse.ArgumentParser(description="preprocessing cohorts")
# debug
parser.add_argument("--debug", action="store_true", help="debug mode")
parser.add_argument("--debug_nrows", default=100000, type=int, help="debug mode - nrows")
# file directory
parser.add_argument("--mimic_cxr_jpg_dir", default="../mimic-cxr-jpg/", type=str)
parser.add_argument("--chest_imagenome_dir", default="../chest-imagenome/", type=str)
parser.add_argument("--save_dir", default="./preprocessed_data", type=str)
parser.add_argument("--max_study_order", default=20, type=int)
args = parser.parse_args()
return args
class CohortPreprocessor:
def __init__(
self,
args,
):
self.args = args
# check debug
self.nrows = args.debug_nrows if args.debug else None
# load dataset
self._load_mimic_cxr_metadata()
self._load_bbox_objects_tabular() # silver bbox
self._load_attribute_relations_tabular() # silver attribute
self._load_gold_patient_ids()
self._load_gold_1st_image_ids()
def _load_mimic_cxr_metadata(self):
# read
cxr_meta = pd.read_csv(
os.path.join(self.args.mimic_cxr_jpg_dir, "mimic-cxr-2.0.0-metadata.csv"),
usecols=["dicom_id", "subject_id", "study_id", "ViewPosition", "Rows", "Columns", "StudyDate", "StudyTime"],
)
print(cxr_meta.shape)
# rename columns
cxr_meta = cxr_meta.rename(columns={"dicom_id": "image_id"})
# build a new column: StudyDateTime
cxr_meta["StudyDateTime"] = pd.to_datetime(cxr_meta.StudyDate.astype(str).apply(lambda x: f"{x[:4]}-{x[4:6]}-{x[6:]}") + " " + cxr_meta.StudyTime.apply(lambda x: "%010.3f" % x))
# build a new column: StudyOrder
cxr_meta_ = cxr_meta.copy()
cxr_meta_ = cxr_meta_.sort_values(by=["subject_id", "study_id", "StudyDateTime"])
cxr_meta_ = cxr_meta_.drop_duplicates(subset=["subject_id", "study_id"], keep="first").copy()
cxr_meta_["StudyDateTime_study_id"] = cxr_meta_["StudyDateTime"].astype(str) + cxr_meta_["study_id"].astype(str)
cxr_meta_["StudyDateTime_study_id"] = pd.to_datetime(cxr_meta_["StudyDateTime_study_id"])
cxr_meta_["StudyOrder"] = cxr_meta_.groupby(["subject_id"])["StudyDateTime_study_id"].rank(method="dense")
cxr_meta["StudyOrder"] = cxr_meta["study_id"].map(cxr_meta_[["study_id", "StudyOrder"]].set_index("study_id")["StudyOrder"])
# remove overlapped columns
del cxr_meta["StudyDate"]
del cxr_meta["StudyTime"]
# after base preprocessing, keep all data
self.mimic_cxr_metadata = cxr_meta.copy()
# Assumption: Use only frontal images
cxr_meta = cxr_meta[cxr_meta["ViewPosition"].isin(["AP", "PA"])].reset_index(drop=True)
print(cxr_meta.shape)
# Assumption: Given the same study_id, use only one image (studydatetime-first + dicom_id-first)
cxr_meta = cxr_meta.sort_values(["study_id", "StudyDateTime", "image_id"], ascending=[True, True, True])
cxr_meta = cxr_meta[cxr_meta["image_id"].isin(cxr_meta.groupby(["study_id"])["image_id"].first().values)]
print(cxr_meta.shape)
assert cxr_meta.groupby(["study_id", "StudyDateTime"])["image_id"].nunique().value_counts().size == 1
self.meta_data = cxr_meta.copy()
def _load_bbox_objects_tabular(self):
bbox_objects_tabular = pd.read_csv(
os.path.join(self.args.chest_imagenome_dir, "silver_dataset/scene_tabular/bbox_objects_tabular.txt"),
sep="\t",
nrows=self.nrows,
usecols=[
"object_id",
"x1",
"y1",
"x2",
"y2",
"width",
"height",
"bbox_name",
# 'synsets', 'name',
# 'original_x1', 'original_y1', 'original_x2','original_y2', 'original_width', 'original_height',
],
)
bbox_objects_tabular["image_id"] = bbox_objects_tabular["object_id"].apply(lambda x: x.split("_")[0]) # add column
self.bbox_objects_tabular = bbox_objects_tabular
def _load_attribute_relations_tabular(self):
attribute_relations_tabular = pd.read_csv(
os.path.join(self.args.chest_imagenome_dir, "silver_dataset/scene_tabular/attribute_relations_tabular.txt"),
sep="\t",
nrows=self.nrows,
usecols=["study_id", "image_id", "sent_loc", "row_id", "bbox", "categoryID", "label_name", "relation"],
)
self.attribute_relations_tabular = attribute_relations_tabular
def _load_gold_patient_ids(self):
gold_dataset = pd.read_csv(
os.path.join(self.args.chest_imagenome_dir, "gold_dataset/gold_attributes_relations_500pts_500studies1st.txt"),
sep="\t",
)
gold_dataset = gold_dataset.rename(columns={"patient_id": "subject_id"})
gold_dataset["image_id"] = gold_dataset["image_id"].str.replace(".dcm", "")
assert gold_dataset["subject_id"].nunique() == 500
self.gold_pids = gold_dataset["subject_id"].unique()
def _load_gold_1st_image_ids(self):
gold_dataset = pd.read_csv(
os.path.join(self.args.chest_imagenome_dir, "gold_dataset/gold_attributes_relations_500pts_500studies1st.txt"),
sep="\t",
)
gold_dataset = gold_dataset.rename(columns={"patient_id": "subject_id"})
gold_dataset["image_id"] = gold_dataset["image_id"].str.replace(".dcm", "")
assert gold_dataset["subject_id"].nunique() == 500
self.gold_1st_iids = gold_dataset["image_id"].unique()
def preprocessImage_bounding_box(self):
"""
1) Remove frontal images where the number of the bounding box in each image less than 36
2) Remove frontal images whose width is more than 3 standard deviations. (in 224*224 image size)
"""
# 0
meta_data = self.meta_data.copy()
bbox_objects_tabular = self.bbox_objects_tabular.copy()
# 1
num_of_unique_bbox = bbox_objects_tabular.groupby(["image_id"])["bbox_name"].nunique()
remove_iids = num_of_unique_bbox[num_of_unique_bbox != 36].index
meta_data = meta_data[~meta_data["image_id"].isin(remove_iids)]
# 2
def get_outlier_image_ids(bbox_name, tgt_data, src_data, measure_of_unit="width", n_std=3):
tgt_array = tgt_data[tgt_data["bbox_name"] == bbox_name][measure_of_unit].copy()
src_array = src_data[src_data["bbox_name"] == bbox_name][measure_of_unit].copy()
mean, std = src_array.mean(), src_array.std()
threshold_min = mean - n_std * std
threshold_max = mean + n_std * std
tgt_array_refined = tgt_array[(tgt_array < threshold_min) | (tgt_array > threshold_max)]
outlier_image_ids = tgt_data.loc[tgt_array_refined.index]["image_id"].values
return outlier_image_ids
meta_bbox = bbox_objects_tabular[bbox_objects_tabular["image_id"].isin(meta_data.image_id.unique())].copy()
assert len(bbox_objects_tabular.bbox_name.unique()) == 36
for bbox_name in bbox_objects_tabular.bbox_name.unique():
outlier_image_ids = get_outlier_image_ids(bbox_name=bbox_name, tgt_data=meta_bbox, src_data=bbox_objects_tabular)
meta_data = meta_data[~meta_data["image_id"].isin(outlier_image_ids)]
# -1
self.meta_data = meta_data.reset_index(drop=True)
print("preprocessImage_bounding_box: {}".format(self.meta_data.shape))
def preprocessStudy_study_order(self, max_study_order=20):
"""
we retain studies with study order <= max_study_order
"""
# 0
meta_data = self.meta_data.copy()
# 1
meta_data = meta_data[meta_data["StudyOrder"] <= max_study_order]
# -1
self.meta_data = meta_data.reset_index(drop=True)
print("preprocessStudy_study_order: {}".format(self.meta_data.shape))
def preprocessPatient_gold_pids(self, flag="silver"):
"""
remove gold pids
"""
# 0
meta_data = self.meta_data.copy()
# 1
if flag == "silver":
meta_data = meta_data[~meta_data["subject_id"].isin(self.gold_pids)]
elif flag == "gold":
meta_data = meta_data[meta_data["subject_id"].isin(self.gold_pids)]
else:
raise ValueError("flag must be either 'silver' or 'gold'")
# -1
self.meta_data = meta_data.reset_index(drop=True)
print("remove_gold_pids: {}".format(self.meta_data.shape))
def save_cohort_silver(self):
# load
meta_data = self.meta_data.copy()
# arrange
meta_data = meta_data[
[
"subject_id",
"study_id",
"image_id",
"ViewPosition",
"StudyDateTime",
"StudyOrder",
]
]
meta_data = meta_data.sort_values(by=["subject_id", "StudyOrder"])
# save
os.makedirs(self.args.save_dir, exist_ok=True)
meta_data = meta_data.reset_index(drop=True)
meta_data.to_csv(os.path.join(self.args.save_dir, f"cohort_silver.csv"), index=False)
def reset_meta_data(self):
self._load_mimic_cxr_metadata()
def preprocessStudy_gold_1st(self):
meta_data_raw = self.mimic_cxr_metadata.copy()
meta_data_gold_1st = meta_data_raw[meta_data_raw["image_id"].isin(self.gold_1st_iids)]
assert len(meta_data_gold_1st) == 500
meta_data = self.meta_data.copy()
meta_data = pd.concat(
[
meta_data[meta_data["StudyOrder"] != 1],
meta_data_gold_1st,
]
)
assert len(self.meta_data) == len(meta_data)
self.meta_data = meta_data.reset_index(drop=True)
def save_cohort_gold(self):
# load
meta_data = self.meta_data.copy()
# arrange
meta_data = meta_data[
[
"subject_id",
"study_id",
"image_id",
"ViewPosition",
"StudyDateTime",
"StudyOrder",
]
]
meta_data = meta_data.sort_values(by=["subject_id", "StudyOrder"])
# save
os.makedirs(self.args.save_dir, exist_ok=True)
meta_data = meta_data.reset_index(drop=True)
meta_data.to_csv(os.path.join(self.args.save_dir, f"cohort_gold.csv"), index=False)
def main(args):
# load preprocessor
cohort_preproc = CohortPreprocessor(args)
# NOTE: preprocessing for silver dataset
cohort_preproc.preprocessImage_bounding_box()
cohort_preproc.preprocessStudy_study_order(max_study_order=args.max_study_order)
cohort_preproc.preprocessPatient_gold_pids(flag="silver")
cohort_preproc.save_cohort_silver()
# NOTE: preprocessing for gold dataset
cohort_preproc.reset_meta_data()
cohort_preproc.preprocessStudy_study_order(max_study_order=args.max_study_order)
cohort_preproc.preprocessPatient_gold_pids(flag="gold")
cohort_preproc.preprocessStudy_gold_1st() # NOTE: specialized pre-processing for gold dataset
cohort_preproc.save_cohort_gold()
if __name__ == "__main__":
args = config()
main(args)
print("Done")