[e988c2]: / tests / unit / query_model / test_transforms.py

Download this file

367 lines (320 with data), 11.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import datetime
from ehrql.query_model.nodes import (
Case,
Column,
Dataset,
Filter,
Function,
Parameter,
PickOneRowPerPatient,
Position,
SelectColumn,
SelectTable,
Sort,
TableSchema,
Value,
)
from ehrql.query_model.transforms import (
PickOneRowPerPatientWithColumns,
apply_transforms,
substitute_parameters,
)
def test_pick_one_row_per_patient_transform():
events = SelectTable(
"events",
schema=TableSchema(
date=Column(datetime.date), code=Column(str), value=Column(float)
),
)
sorted_events = Sort(
Sort(
Sort(
events,
SelectColumn(events, "value"),
),
SelectColumn(events, "code"),
),
SelectColumn(events, "date"),
)
first_event = PickOneRowPerPatient(sorted_events, Position.FIRST)
dataset = dataset_factory(
first_code=SelectColumn(first_event, "code"),
first_value=SelectColumn(first_event, "value"),
# Create a new distinct column object with the same value as the first column:
# equal but not identical objects expose bugs in the query model transformation
first_code_again=SelectColumn(first_event, "code"),
)
first_event_with_columns = PickOneRowPerPatientWithColumns(
source=sorted_events,
position=Position.FIRST,
selected_columns=frozenset(
{
SelectColumn(
source=sorted_events,
name="value",
),
SelectColumn(
source=sorted_events,
name="code",
),
}
),
)
expected = {
"first_code": SelectColumn(first_event_with_columns, "code"),
"first_value": SelectColumn(first_event_with_columns, "value"),
"first_code_again": SelectColumn(first_event_with_columns, "code"),
}
transformed = apply_transforms(dataset)
assert transformed.variables == expected
def test_adds_one_selected_column_to_sorts():
events = SelectTable(
"events",
TableSchema(i1=Column(int), i2=Column(int)),
)
by_i1 = Sort(events, SelectColumn(events, "i1"))
variable = SelectColumn(
PickOneRowPerPatient(source=by_i1, position=Position.FIRST),
"i2",
)
by_i2 = Sort(events, SelectColumn(events, "i2"))
by_i2_then_i1 = Sort(by_i2, SelectColumn(events, "i1"))
expected = SelectColumn(
PickOneRowPerPatientWithColumns(
by_i2_then_i1,
Position.FIRST,
selected_columns=frozenset(
{
SelectColumn(
source=by_i2_then_i1,
name="i2",
),
}
),
),
"i2",
)
assert apply_transforms(variable) == expected
def test_adds_sorts_at_lowest_priority():
events = SelectTable(
"events",
TableSchema(i1=Column(int), i2=Column(int), i3=Column(int)),
)
by_i2 = Sort(events, SelectColumn(events, "i2"))
by_i2_then_i1 = Sort(by_i2, SelectColumn(by_i2, "i1"))
variable = SelectColumn(
PickOneRowPerPatient(source=by_i2_then_i1, position=Position.FIRST),
"i3",
)
by_i3 = Sort(events, SelectColumn(events, "i3"))
by_i3_then_i2 = Sort(by_i3, SelectColumn(events, "i2"))
by_i3_then_i2_then_i1 = Sort(by_i3_then_i2, SelectColumn(by_i3_then_i2, "i1"))
expected = SelectColumn(
PickOneRowPerPatientWithColumns(
by_i3_then_i2_then_i1,
Position.FIRST,
selected_columns=frozenset(
{
SelectColumn(
source=by_i3_then_i2_then_i1,
name="i3",
),
}
),
),
"i3",
)
assert apply_transforms(variable) == expected
def test_copes_with_interleaved_sorts_and_filters():
events = SelectTable(
"events",
TableSchema(i1=Column(int), i2=Column(int), i3=Column(int)),
)
by_i2 = Sort(events, SelectColumn(events, "i2"))
by_i2_filtered = Filter(by_i2, Value(True))
by_i2_then_i1 = Sort(by_i2_filtered, SelectColumn(by_i2_filtered, "i1"))
variable = SelectColumn(
PickOneRowPerPatient(source=by_i2_then_i1, position=Position.FIRST),
"i3",
)
by_i3 = Sort(events, SelectColumn(events, "i3"))
by_i3_then_i2 = Sort(by_i3, SelectColumn(events, "i2"))
by_i3_then_i2_filtered = Filter(by_i3_then_i2, Value(True))
by_i3_then_i2_then_i1 = Sort(
by_i3_then_i2_filtered, SelectColumn(by_i3_then_i2_filtered, "i1")
)
expected = SelectColumn(
PickOneRowPerPatientWithColumns(
by_i3_then_i2_then_i1,
Position.FIRST,
selected_columns=frozenset(
{
SelectColumn(
source=by_i3_then_i2_then_i1,
name="i3",
),
}
),
),
"i3",
)
assert apply_transforms(variable) == expected
def test_doesnt_duplicate_existing_sorts():
events = SelectTable(
"events",
TableSchema(i1=Column(int)),
)
by_i1 = Sort(events, SelectColumn(events, "i1"))
variable = SelectColumn(
PickOneRowPerPatient(source=by_i1, position=Position.FIRST),
"i1",
)
expected = SelectColumn(
PickOneRowPerPatientWithColumns(
by_i1,
Position.FIRST,
selected_columns=frozenset(
{
SelectColumn(
source=by_i1,
name="i1",
),
}
),
),
"i1",
)
assert apply_transforms(variable) == expected
def test_adds_sorts_in_lexical_order_of_column_names():
events = SelectTable(
"events",
TableSchema(i1=Column(int), iz=Column(int), ia=Column(int)),
)
by_i1 = Sort(events, SelectColumn(events, "i1"))
first_initial = PickOneRowPerPatient(source=by_i1, position=Position.FIRST)
dataset = dataset_factory(
z=SelectColumn(first_initial, "iz"),
a=SelectColumn(first_initial, "ia"),
)
transformed = apply_transforms(dataset)
by_iz = Sort(events, SelectColumn(events, "iz"))
by_iz_then_ia = Sort(by_iz, SelectColumn(events, "ia"))
by_iz_then_ia_then_i1 = Sort(by_iz_then_ia, SelectColumn(events, "i1"))
first_with_extra_sorts = PickOneRowPerPatientWithColumns(
by_iz_then_ia_then_i1,
Position.FIRST,
selected_columns=frozenset(
{
SelectColumn(
source=by_iz_then_ia_then_i1,
name="iz",
),
SelectColumn(
source=by_iz_then_ia_then_i1,
name="ia",
),
}
),
)
expected = dict(
z=SelectColumn(first_with_extra_sorts, "iz"),
a=SelectColumn(first_with_extra_sorts, "ia"),
)
assert transformed.variables == expected
def test_maps_booleans_to_a_sortable_type():
events = SelectTable(
"events",
TableSchema(i=Column(int), b=Column(bool)),
)
by_i = Sort(events, SelectColumn(events, "i"))
variable = SelectColumn(
PickOneRowPerPatient(source=by_i, position=Position.FIRST),
"b",
)
b = SelectColumn(events, "b")
by_b = Sort(
events, Case({b: Value(2), Function.Not(b): Value(1)}, default=Value(0))
)
by_b_then_i = Sort(by_b, SelectColumn(events, "i"))
expected = SelectColumn(
PickOneRowPerPatientWithColumns(
by_b_then_i,
Position.FIRST,
selected_columns=frozenset(
{
SelectColumn(
source=by_b_then_i,
name="b",
),
}
),
),
"b",
)
assert apply_transforms(variable) == expected
def test_sorts_by_derived_value_handled_correctly():
events = SelectTable("events", TableSchema(i=Column(int)))
by_negative_i = Sort(events, Function.Negate(SelectColumn(events, "i")))
variable = SelectColumn(PickOneRowPerPatient(by_negative_i, Position.FIRST), "i")
by_i = Sort(events, SelectColumn(events, "i"))
by_i_then_by_negative_i = Sort(by_i, Function.Negate(SelectColumn(events, "i")))
expected = SelectColumn(
PickOneRowPerPatientWithColumns(
by_i_then_by_negative_i,
Position.FIRST,
frozenset({SelectColumn(by_i_then_by_negative_i, "i")}),
),
"i",
)
assert apply_transforms(variable) == expected
def test_identical_operations_are_not_transformed_differently():
# Query model nodes are intended to be value objects: that is equality is determined
# by value, not identity and equal objects should be intersubstitutable. Approaches
# to query transformation which involve mutation can violate this principle and
# treat equal but non-identical nodes differently. This tests for a specific
# instance of this problem.
events = SelectTable(
"events",
TableSchema(i1=Column(int), i2=Column(int)),
)
# Construct two equal but non-identical sort-and-picks
first_by_i1_v1 = PickOneRowPerPatient(
Sort(events, SelectColumn(events, "i1")), position=Position.FIRST
)
first_by_i1_v2 = PickOneRowPerPatient(
Sort(events, SelectColumn(events, "i1")), position=Position.FIRST
)
# Select different columns from each one
dataset = dataset_factory(
i1=SelectColumn(first_by_i1_v1, "i1"),
i2=SelectColumn(first_by_i1_v2, "i2"),
)
# We expect i2 to be added at the bottom of the stack of sorts
by_i2_then_i1 = Sort(
source=Sort(source=events, sort_by=SelectColumn(source=events, name="i2")),
sort_by=SelectColumn(source=events, name="i1"),
)
# We expect the selected columns to include both i1 and i2
pick_with_columns = PickOneRowPerPatientWithColumns(
source=by_i2_then_i1,
position=Position.FIRST,
selected_columns=frozenset(
{
SelectColumn(by_i2_then_i1, "i1"),
SelectColumn(by_i2_then_i1, "i2"),
}
),
)
expected = dict(
i1=SelectColumn(source=pick_with_columns, name="i1"),
i2=SelectColumn(source=pick_with_columns, name="i2"),
)
assert apply_transforms(dataset).variables == expected
def test_substitute_parameters():
node = Function.Negate(Function.Add(Value(10), Parameter("i", int)))
transformed = substitute_parameters(node, i=20)
assert transformed == Function.Negate(Function.Add(Value(10), Value(20)))
def dataset_factory(**variables):
return Dataset(
population=Value(False), variables=variables, events={}, measures=None
)