[e988c2]: / tests / unit / dummy_data_nextgen / test_measures.py

Download this file

112 lines (90 with data), 3.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
from datetime import date
from ehrql import years
from ehrql.dummy_data_nextgen.measures import DummyMeasuresDataGenerator
from ehrql.measures import INTERVAL, Measures
from ehrql.tables import Constraint, EventFrame, PatientFrame, Series, table
@table
class patients(PatientFrame):
sex = Series(
str,
constraints=[Constraint.Categorical(["male", "female"]), Constraint.NotNull()],
)
region = Series(
str,
constraints=[
Constraint.Categorical(
["London", "The North", "The Countryside"],
),
Constraint.NotNull(),
],
)
@table
class events(EventFrame):
date = Series(date, constraints=[Constraint.NotNull()])
code = Series(
str,
constraints=[
Constraint.Categorical(["abc", "def", "foo"]),
Constraint.NotNull(),
],
)
def test_dummy_measures_data_generator():
events_in_interval = events.where(events.date.is_during(INTERVAL))
event_count = events_in_interval.count_for_patient()
foo_event_count = events_in_interval.where(events.code == "foo").count_for_patient()
had_event = events_in_interval.exists_for_patient()
intervals = years(2).starting_on("2020-01-01")
measures = Measures()
measures.dummy_data_config.population_size = 350
measures.define_measure(
"foo_events_by_sex",
numerator=foo_event_count,
denominator=event_count,
group_by=dict(sex=patients.sex),
intervals=intervals,
)
measures.define_measure(
"had_event_by_region",
numerator=had_event,
denominator=patients.exists_for_patient(),
group_by=dict(region=patients.region),
intervals=intervals,
)
generator = DummyMeasuresDataGenerator(
measures, measures.dummy_data_config, today=date(2024, 1, 1)
)
results = list(generator.get_results())
# Check we generated the right number of rows: 2 rows for each breakdown by sex, 3
# for each breakdown by region
assert len(results) == (len(intervals) * 2) + (len(intervals) * 3)
# The dummy data results go through the same code path as the real thing, so we
# don't need to worry about them being correct; rather than challenge is making sure
# we generate enough dummy data that matches the numerator/denominator conditions
# that the results are not empty. So below we assert that, for every numerator and
# denominator in every interval, something matched i.e. the count was above zero.
numerators = [row[4] for row in results]
denominators = [row[5] for row in results]
assert all([v > 0 for v in numerators])
assert all([v > 0 for v in denominators])
def test_population_is_nonzero_when_no_groups():
measures = Measures()
measures.define_measure(
"events_per_patient",
numerator=events.where(events.date.is_during(INTERVAL)).count_for_patient(),
denominator=patients.exists_for_patient(),
intervals=years(1).starting_on("2020-01-01"),
# Deliberately omiting any `group_by` columns
)
generator = DummyMeasuresDataGenerator(measures, measures.dummy_data_config)
assert generator.generator.population_size > 0
def test_configured_population_size():
measures = Measures()
measures.define_measure(
"had_event",
numerator=events.exists_for_patient(),
denominator=patients.exists_for_patient(),
intervals=years(1).starting_on("2020-01-01"),
)
measures.configure_dummy_data(population_size=10)
generator = DummyMeasuresDataGenerator(measures, measures.dummy_data_config)
assert generator.generator.population_size == 10