[e988c2]: / ehrql / dummy_data_nextgen / generator.py

Download this file

658 lines (584 with data), 27.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
import dataclasses
import functools
import itertools
import logging
import math
import string
import time
from bisect import bisect_left
from collections import defaultdict
from contextlib import contextmanager
from datetime import date, timedelta
from random import Random
from ehrql.dummy_data_nextgen.query_info import QueryInfo, filter_values
from ehrql.exceptions import CannotGenerate
from ehrql.query_engines.in_memory import InMemoryQueryEngine
from ehrql.query_engines.in_memory_database import InMemoryDatabase
from ehrql.query_language import DummyDataConfig
from ehrql.query_model.introspection import all_inline_patient_ids
from ehrql.query_model.nodes import Dataset, Function
from ehrql.tables import Constraint
from ehrql.utils.regex_utils import create_regex_generator
log = logging.getLogger()
CHARS = string.ascii_letters + string.digits + ".-+_"
# Use caching to avoid constantly re-creating the generators
get_regex_generator = functools.cache(create_regex_generator)
class PopulationSubset:
"""A population subset consists of some group of patients all with
"similar" characteristics. These don't really correspond to
any particularly natural category among patients, and are instead an idea
borrowed from a concept called "swarm testing". The idea is to
first draw a random population_subset, and then draw patients from the
conditional distribution on that population_subset. This allows us to
generate combinations that would be hard to generate from a pure
distribution.
For example, if you're just choosing the number of
events and any diagnosis code can be valid, it is very hard to
generate a reasonable number of patients with one but not both of
asthma and diabetes when drawing uniformly, but by only drawing from
a subset of the diagnostic codes consistently across all events this
becomes possible.
"""
def __init__(self, generator: "DummyPatientGenerator", seed):
self.generator = generator
self.random = Random(seed)
self.__cache = {}
def get_possible_values(self, column_info):
try:
return self.__cache[column_info]
except KeyError:
pass
result = self.generator.get_possible_values(column_info)
if len(result) > 1:
n = self.random.randint(1, len(result))
if n < len(result):
indices = self.random.sample(range(0, len(result)), n)
indices.sort()
if result[0] is None and 0 not in indices:
indices = [0, *indices]
result = [result[i] for i in indices]
self.__cache[column_info] = result
return result
class DummyDataGenerator:
@classmethod
def from_dataset(cls, dataset, **kwargs):
return cls(
dataset._compile(), configuration=dataset.dummy_data_config, **kwargs
)
def __init__(
self,
dataset,
configuration=None,
batch_size=5000,
random_seed="BwRV3spP",
today=None,
**kwargs,
):
if configuration is None:
configuration = DummyDataConfig(**kwargs)
elif kwargs:
raise ValueError(
"May specify configuration or provide kwargs but not both."
)
assert not configuration.legacy
self.configuration = configuration
if self.configuration.additional_population_constraint is not None:
dataset = dataclasses.replace(
dataset,
population=Function.And(
lhs=dataset.population,
rhs=self.configuration.additional_population_constraint,
),
)
self.dataset = dataset
self.population_size = configuration.population_size
self.batch_size = batch_size
self.random_seed = random_seed
self.timeout = configuration.timeout
# TODO: I dislike using today's date as part of the data generation because it
# makes the results non-deterministic. However until we're able to infer a
# suitable time range by inspecting the query, this will have to do.
self.today = today if today is not None else date.today()
self.patient_generator = DummyPatientGenerator(
self.dataset,
self.random_seed,
self.today,
self.population_size,
)
log.info("Using next generation dummy data generation")
def get_data(self):
generator = self.patient_generator
data = generator.get_empty_data()
found = 0
generated = 0
# Create a version of the query with just the population definition, and an
# in-memory engine to run it against
population_query = Dataset(
population=self.dataset.population, variables={}, events={}, measures=None
)
database = InMemoryDatabase()
engine = InMemoryQueryEngine(database)
log.info(
f"Attempting to generate {self.population_size} matching patients "
f"(random seed: {self.random_seed}, timeout: {self.timeout}s)"
)
log.info(
"Use `dataset.configure_dummy_data(population_size=N)` "
"to change number of patients generated"
)
start = time.time()
for patient_id_batch in self.get_patient_id_batches(): # pragma: no branch
# Generate batches of patient data (just enough to determine population
# membership) and find those matching the population definition
patient_batch = {
patient_id: generator.get_patient_data_for_population_condition(
patient_id
)
for patient_id in patient_id_batch
}
generated += len(patient_batch)
database.populate(merge_table_data(*patient_batch.values()))
results = engine.get_results(population_query)
valid_patient_ids = set()
# Accumulate all data from matching patients, returning once we have enough
for row in results:
# Because of the existence of InlinePatientTables it's possible to get
# patients out of a population which we didn't put in. We want to ignore
# these.
if row.patient_id not in patient_batch:
continue
valid_patient_ids.add(row.patient_id)
extend_table_data(
data,
patient_batch[row.patient_id],
# Include additional data needed for the dataset but not required just
# to determine population membership
generator.get_remaining_patient_data(row.patient_id),
)
found += 1
if found >= self.population_size:
break
# With each batch of patients we can look at what empirical
# characteristics patients that make it into the population definition
# have. We can then use this to inform how we generate patients for
# future batches by ensuring that they have all the characteristics
# we believe are necessary and none of the characteristics we believe
# are forbidden.
#
# In this particular case what we're doing is we're looking for
# which tables are needed to satisfy or block satisfaction of the
# population definition. For example, we might have a requirement that
# the patient has an asthma diagnosis. If so, the patient needs at least
# one clinical event to satisfy the population condition, so on future
# iterations we ensure all patients are drawn with at least one clinical event.
#
# Similarly it might be that actually any clinical event we generate will block
# the patient being generated. A population definition that says that the
# patient doesn't have asthma will do this, because the asthma code is often
# then the one we will generate, so any events will result in a patient not
# satisfying the population definition. In this case we mark the clinical_events
# table as forbidden and never generate clinical events in the dummy data.
if generator.required_tables is None and valid_patient_ids:
forbidden_tables = set(database.tables)
assert generator.forbidden_tables is None
tables_by_id = defaultdict(set)
for table, rows in database.tables.items():
for row in rows.to_records():
tables_by_id[row["patient_id"]].add(table)
required_tables = None
for patient_id in valid_patient_ids:
tables = tables_by_id[patient_id]
forbidden_tables -= tables
if required_tables is None:
required_tables = set(tables)
else:
required_tables &= tables
assert required_tables is not None
generator.required_tables = frozenset(required_tables)
generator.forbidden_tables = frozenset(forbidden_tables)
if found >= self.population_size:
return data
log.info(f"Generated {generated} patients, found {found} matching")
if time.time() - start > self.timeout:
log.warning(
f"Failed to find {self.population_size} matching patients within "
f"{self.timeout} seconds — giving up"
)
log.info(
f"Use e.g. `dataset.configure_dummy_data(timeout={self.timeout * 2})` "
f"to try for longer"
)
return data
def get_patient_id_batches(self):
id_stream = self.get_patient_id_stream()
while True:
yield itertools.islice(id_stream, self.batch_size)
def get_patient_id_stream(self):
# Where a query involves inline tables we want to extract all the patient IDs
# and include them in the IDs for which we're going to generate dummy data
inline_patient_ids = all_inline_patient_ids(self.dataset)
yield from sorted(inline_patient_ids)
for i in range(1, 2**63): # pragma: no branch
if i not in inline_patient_ids:
yield i
def get_results_tables(self):
database = InMemoryDatabase(self.get_data())
engine = InMemoryQueryEngine(database)
return engine.get_results_tables(self.dataset)
def get_results(self):
tables = self.get_results_tables()
yield from next(tables)
for remaining in tables:
assert False, "Expected only one results table"
class DummyPatientGenerator:
def __init__(self, dataset, random_seed, today, population_size):
self.__rnd = None
self.random_seed = random_seed
self.today = today
self.query_info = QueryInfo.from_dataset(dataset)
self.population_size = population_size
self.__active_population_subsets = []
self.__patient_population_subsets = {}
self.__column_values = {}
self.__reset_event_range()
self.required_tables = None
self.forbidden_tables = None
@property
def rnd(self):
if self.__rnd is None:
raise AssertionError(
"Attempting to use random generation outside of a seed block."
)
return self.__rnd
@contextmanager
def seed(self, *seeds):
seed = ":".join(map(str, seeds))
old_rnd = self.__rnd
try:
self.__rnd = Random(f"{self.random_seed}:{seed}")
yield
finally:
self.__rnd = old_rnd
def get_patient_data_for_population_condition(self, patient_id):
# Generate data for just those tables needed for determining whether the patient
# is included in the population
return self.get_patient_data(patient_id, self.query_info.population_table_names)
def get_remaining_patient_data(self, patient_id):
# Generate data for any tables not included above
return self.get_patient_data(patient_id, self.query_info.other_table_names)
def get_patient_data(self, patient_id, table_names):
# Generate some basic demographic facts about the patient which subsequent table
# generators can use to ensure a consistent patient history
self.generate_patient_facts(patient_id)
data = {}
for name in table_names:
# Seed the random generator per-table, so that we get the same data no
# matter what order the tables are generated in
with self.seed(f"{patient_id}:{name}"):
table_info = self.query_info.tables[name]
# Support specialised generators for individual tables, otherwise just make
# some empty rows
get_rows = getattr(self, f"rows_for_{table_info.name}", self.empty_rows)
rows = get_rows(table_info)
for row in rows:
# Fill in any values that haven't already been set by a specialised
# generator
self.populate_row(patient_id, table_info, row)
table_node = table_info.table_node
column_names = table_node.schema.column_names
data[table_node] = [
(patient_id, *[row[c] for c in column_names]) for row in rows
]
return data
def get_patient_column(self, column_name):
for table_name in self.query_info.population_table_names:
try:
return self.query_info.tables[table_name].columns[column_name]
except KeyError:
pass
def __reset_event_range(self):
self.events_start = date(1900, 1, 1)
self.events_end = self.today
def get_patient_population_subset(self, patient_id):
try:
return self.__patient_population_subsets[patient_id]
except KeyError:
pass
with self.seed("population_subset", patient_id):
# This causes the number of population_subsets to be roughly
# logarithmic in the number of patients, because if we
# have N population_subsets, we have a 1 / (N + 1) chance of
# discovering a new one at this point.
i = self.rnd.randint(0, len(self.__active_population_subsets))
if i == len(self.__active_population_subsets):
self.__active_population_subsets.append(
PopulationSubset(generator=self, seed=self.rnd.getrandbits(64))
)
result = self.__active_population_subsets[i]
self.__patient_population_subsets[patient_id] = result
return result
def generate_patient_facts(self, patient_id):
# Seed the random generator using the patient_id so we always generate the same
# data for the same patient
with self.seed(patient_id):
self.__reset_event_range()
iters = 0
while True:
iters += 1
assert iters <= 1000
# Retry until we have a date of birth and date of death that are
# within reasonable ranges
dob_column = self.get_patient_column("date_of_birth")
if dob_column is not None:
date_of_birth = self.get_random_value_for_patient(
patient_id, dob_column
)
else:
date_of_birth = self.today - timedelta(
days=self.rnd.randrange(0, 120 * 365)
)
dod_column = self.get_patient_column("date_of_death")
if dod_column is not None:
date_of_death = self.get_random_value_for_patient(
patient_id, dod_column
)
else:
age_days = self.rnd.randrange(105 * 365)
date_of_death = date_of_birth + timedelta(days=age_days)
if (
date_of_birth is None
or date_of_death is None
or (
date_of_death >= date_of_birth
and (date_of_death - date_of_birth < timedelta(105 * 365))
)
):
break
self.date_of_birth = date_of_birth
self.events_start = self.date_of_birth
if date_of_death is None:
self.date_of_death = None
self.events_end = self.today
else:
self.date_of_death = (
date_of_death if date_of_death < self.today else None
)
self.events_end = min(self.today, date_of_death)
def rows_for_patients(self, table_info):
row = {
"date_of_birth": self.date_of_birth,
"date_of_death": self.date_of_death,
}
# Apply any FirstOfMonth constraints
for key, value in row.items():
if key in table_info.columns and value is not None:
if table_info.columns[key].get_constraint(Constraint.FirstOfMonth):
row[key] = value.replace(day=1)
return [row]
def rows_for_practice_registrations(self, table_info):
# TODO: Generate more interesting registration histories; for now, we just
# assume that every patient is permanently registered with a single practice
# from birth
row = {
"start_date": self.events_start,
"end_date": None,
}
return [row]
def empty_rows(self, table_info):
# Generate a small handful of events for event-level tables
if self.forbidden_tables and table_info.name in self.forbidden_tables:
return []
if table_info.has_one_row_per_patient:
row_count = self.rnd.randint(0, 1)
else:
# Geometric distribution with parameter 0.2. Will average 4 (=1/0.2 - 1) events
# per patient.
row_count = math.floor(math.log(self.rnd.random()) / math.log(1 - 0.2))
if self.required_tables and table_info.name in self.required_tables:
row_count += 1
return [{} for _ in range(row_count)]
def populate_row(self, patient_id, table_info, row):
# Remove any columns created by table generators that aren't used in the query
for extra_column in row.keys() - table_info.columns:
del row[extra_column]
# Populate any columns used in the query which haven't already been set
for name, column_info in table_info.columns.items():
if name not in row:
row[name] = self.get_random_value_for_patient(patient_id, column_info)
def __check_values(self, column_info, result):
if not result:
raise CannotGenerate(
f"Unable to find any values for {column_info.name} that satisfy the population definition."
+ (
""
if self.__is_exhaustive(column_info)
else " If you believe this should be possible, please report this as a bug."
)
)
for v in result:
assert v is None or isinstance(v, column_info.type)
return result
def __is_exhaustive(self, column_info):
if column_info.get_constraint(
Constraint.Categorical
) or column_info.get_constraint(Constraint.ClosedRange):
return True
return column_info.type not in (int, float, str)
def get_possible_values(self, column_info):
try:
return self.__column_values[column_info]
except KeyError:
pass
with self.seed(f"columns:{column_info.name}"):
exhaustive = True
# Arbitrary small number of retries for when we don't manage
# to generate enough of some unbounded range the first time.
for _ in range(3):
if cat_constraint := column_info.get_constraint(Constraint.Categorical):
base_values = list(cat_constraint.values)
elif range_constraint := column_info.get_constraint(
Constraint.ClosedRange
):
base_values = range(
range_constraint.minimum,
range_constraint.maximum + 1,
range_constraint.step,
)
elif column_info.type is date:
earliest_possible = date(1900, 1, 1)
base_values = [
earliest_possible + timedelta(days=i)
for i in range((self.today - earliest_possible).days + 1)
]
elif column_info.type is bool:
base_values = [False, True]
elif column_info.type is int:
base_values = list(
range(
-max(100, self.population_size * 2),
max(100, self.population_size * 2),
)
)
exhaustive = False
elif column_info.type is float:
base_values = [
0.01 * i for i in range(max(101, self.population_size * 2 + 1))
]
exhaustive = False
elif column_info.type is str:
exhaustive = False
if column_info._values_used:
# If we know some good strings already there's no point in generating
# additional strings that almost certainly won't work.'
base_values = []
elif regex_constraint := column_info.get_constraint(
Constraint.Regex
):
generator = get_regex_generator(regex_constraint.regex)
base_values = [
generator(self.rnd)
for _ in range(self.population_size * 10)
]
else:
# A random ASCII string is unlikely to be very useful here, but it at least
# makes it a bit clearer what the issue is (that we don't know enough about
# the column to generate anything more helpful) rather than the blank string
# we always used to return
base_values = [
"".join(
self.rnd.choice(CHARS)
for _ in range(self.rnd.randrange(16))
)
for _ in range(self.population_size * 10)
]
else:
assert False
base_values = list(base_values)
base_values.extend(column_info._values_used)
base_values.append(None)
if column_info.name == "date_of_death":
base_values = [
v for v in base_values if v is None or v < self.today
]
base_values = [
v
for v in base_values
if all(c.validate(v) for c in column_info.constraints)
]
if column_info.query is None:
values = base_values
else:
values = filter_values(column_info.query, base_values)
if exhaustive or values:
break
values.sort(key=lambda x: (x is not None, x))
values = self.__check_values(column_info, values)
assert values[0] is None or None not in values
self.__column_values[column_info] = values
return values
def get_random_value(self, column_info):
values = self.get_possible_values(column_info)
assert values
return self.choose_random_value(column_info, values)
def get_random_value_for_patient(self, patient_id, column_info):
population_subset = self.get_patient_population_subset(patient_id)
values = population_subset.get_possible_values(column_info)
assert values
return self.choose_random_value(column_info, values)
def choose_random_value(self, column_info, values):
if column_info.type is date:
# If this date column is date of death, and None is a possible
# value (but not the only one), we want to skew the dummy data towards
# producing None values most often. The actual weights here are a bit arbitrary,
# but result in None being picked around 90% of the time
if (
column_info.name == "date_of_death"
and values[0] is None
and len(values) > 1
):
# total weights are 10; None is given a weight of 9 and all other
# values get weightings that add up to 1
other_weights = [1 / (len(values) - 1)] * (len(values) - 1)
weights = [9, *other_weights]
else:
weights = None
result = self.rnd.choices(values, weights=weights, k=1)[0]
if result is None:
return result
if self.events_start <= result <= self.events_end:
return result
lo = bisect_left(
values, self.events_start, lo=1 if values[0] is None else 0
)
hi = bisect_left(values, self.events_end, lo=lo)
if hi < len(values) and values[hi] == self.events_end:
hi += 1
if lo >= len(values) or hi == 0 or lo == hi:
# TODO: This is something of a bad hack.
# We've found ourselves in a situation where we've generated
# a patient that can't actually have a valid value for this,
# but we are required to have one. The solution here is to just
# return some random nonsense and let the population definition
# exclude this patient.
#
# We pick values[0] in particular because that's where None will
# be, so it's the only possible valid value, but if this column
# is not nullable then it'll just be an arbitrary date that can't
# work.
return values[0]
i = self.rnd.randrange(lo, hi)
return values[i]
else:
return self.rnd.choice(values)
def get_empty_data(self):
return {
table_info.table_node: [] for table_info in self.query_info.tables.values()
}
def extend_table_data(target, *others):
for other in others:
for key, value in other.items():
target.setdefault(key, []).extend(value)
def merge_table_data(*dicts):
target = {}
extend_table_data(target, *dicts)
return target