[e5f1db]: / tests / io / test_read.py

Download this file

292 lines (233 with data), 11.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import numpy as np
import pandas as pd
import pytest
from pandas import CategoricalDtype
from ehrapy.io._read import read_csv, read_fhir, read_h5ad
from tests.conftest import TEST_DATA_PATH
_TEST_PATH = f"{TEST_DATA_PATH}/io"
_TEST_PATH_H5AD = f"{_TEST_PATH}/h5ad"
_TEST_PATH_FHIR = f"{_TEST_PATH}/fhir/json"
def test_read_csv():
adata = read_csv(dataset_path=f"{_TEST_PATH}/dataset_basic.csv")
matrix = np.array(
[[12, 14, 500, False], [13, 7, 330, False], [14, 10, 800, True], [15, 11, 765, True], [16, 3, 800, True]]
)
assert adata.X.shape == (5, 4)
assert (adata.X == matrix).all()
assert adata.var_names.to_list() == ["patient_id", "los_days", "b12_values", "survival"]
assert (adata.layers["original"] == matrix).all()
assert id(adata.layers["original"]) != id(adata.X)
def test_read_tsv():
adata = read_csv(dataset_path=f"{_TEST_PATH}/dataset_tsv.tsv", sep="\t")
matrix = np.array(
[
[12, 54, 185.34, False],
[13, 25, 175.39, True],
[14, 36, 183.29, False],
[15, 44, 173.93, True],
[16, 27, 190.32, True],
]
)
assert adata.X.shape == (5, 4)
assert (adata.X == matrix).all()
assert adata.var_names.to_list() == ["patient_id", "age", "height", "gamer"]
assert (adata.layers["original"] == matrix).all()
assert id(adata.layers["original"]) != id(adata.X)
def test_read_multiple_csv_to_anndatas():
adatas = read_csv(dataset_path=f"{_TEST_PATH}")
adata_ids = set(adatas.keys())
assert all(adata_id in adata_ids for adata_id in {"dataset_non_num_with_missing", "dataset_num_with_missing"})
assert set(adatas["dataset_non_num_with_missing"].var_names) == {
"indexcol",
"intcol",
"strcol",
"boolcol",
"binary_col",
}
assert set(adatas["dataset_num_with_missing"].var_names) == {"col" + str(i) for i in range(1, 4)}
def test_read_multiple_csvs_to_dfs():
dfs = read_csv(dataset_path=f"{_TEST_PATH}", return_dfs=True)
dfs_ids = set(dfs.keys())
assert all(id in dfs_ids for id in {"dataset_non_num_with_missing", "dataset_num_with_missing"})
assert set(dfs["dataset_non_num_with_missing"].columns) == {
"indexcol",
"intcol",
"strcol",
"boolcol",
"binary_col",
"datetime",
}
def test_read_multiple_csv_with_obs_only():
adatas = read_csv(
dataset_path=f"{_TEST_PATH}",
columns_obs_only={"dataset_non_num_with_missing": ["strcol"], "dataset_num_with_missing": ["col1"]},
)
adata_ids = set(adatas.keys())
assert all(adata_id in adata_ids for adata_id in {"dataset_non_num_with_missing", "dataset_num_with_missing"})
assert set(adatas["dataset_non_num_with_missing"].var_names) == {"indexcol", "intcol", "boolcol", "binary_col"}
assert set(adatas["dataset_num_with_missing"].var_names) == {"col" + str(i) for i in range(2, 4)}
assert all(
obs_name in set(adatas["dataset_non_num_with_missing"].obs.columns) for obs_name in {"datetime", "strcol"}
)
assert "col1" in set(adatas["dataset_num_with_missing"].obs.columns)
def test_read_h5ad():
adata = read_h5ad(dataset_path=f"{_TEST_PATH_H5AD}/dataset9.h5ad")
assert adata.X.shape == (4, 3)
assert set(adata.var_names) == {"col" + str(i) for i in range(1, 4)}
assert set(adata.obs.columns) == set()
def test_read_multiple_h5ad():
adatas = read_h5ad(dataset_path=f"{_TEST_PATH_H5AD}")
adata_ids = set(adatas.keys())
assert all(adata_id in adata_ids for adata_id in {"dataset8", "dataset9"})
assert set(adatas["dataset8"].var_names) == {"indexcol", "intcol", "boolcol", "binary_col", "strcol"}
assert set(adatas["dataset9"].var_names) == {"col" + str(i) for i in range(1, 4)}
assert all(obs_name in set(adatas["dataset8"].obs.columns) for obs_name in {"datetime"})
def test_read_csv_without_index_column():
adata = read_csv(dataset_path=f"{_TEST_PATH}/dataset_index.csv")
matrix = np.array(
[[1, 14, 500, False], [2, 7, 330, False], [3, 10, 800, True], [4, 11, 765, True], [5, 3, 800, True]]
)
assert adata.X.shape == (5, 4)
assert (adata.X == matrix).all()
assert adata.var_names.to_list() == ["clinic_id", "los_days", "b12_values", "survival"]
assert (adata.layers["original"] == matrix).all()
assert id(adata.layers["original"]) != id(adata.X)
assert list(adata.obs.index) == ["0", "1", "2", "3", "4"]
def test_read_csv_with_bools_obs_only():
adata = read_csv(dataset_path=f"{_TEST_PATH}/dataset_basic.csv", columns_obs_only=["survival", "b12_values"])
matrix = np.array([[12, 14], [13, 7], [14, 10], [15, 11], [16, 3]])
assert adata.X.shape == (5, 2)
assert (adata.X == matrix).all()
assert adata.var_names.to_list() == ["patient_id", "los_days"]
assert (adata.layers["original"] == matrix).all()
assert id(adata.layers["original"]) != id(adata.X)
assert set(adata.obs.columns) == {"b12_values", "survival"}
assert pd.api.types.is_bool_dtype(adata.obs["survival"].dtype)
assert pd.api.types.is_numeric_dtype(adata.obs["b12_values"].dtype)
def test_read_csv_with_bools_and_cats_obs_only():
adata = read_csv(
dataset_path=f"{_TEST_PATH}/dataset_bools_and_str.csv", columns_obs_only=["b12_values", "name", "survival"]
)
matrix = np.array([[1, 14], [2, 7], [3, 10], [4, 11], [5, 3]])
assert adata.X.shape == (5, 2)
assert (adata.X == matrix).all()
assert adata.var_names.to_list() == ["clinic_id", "los_days"]
assert (adata.layers["original"] == matrix).all()
assert id(adata.layers["original"]) != id(adata.X)
assert set(adata.obs.columns) == {"b12_values", "survival", "name"}
assert pd.api.types.is_bool_dtype(adata.obs["survival"].dtype)
assert pd.api.types.is_numeric_dtype(adata.obs["b12_values"].dtype)
assert isinstance(adata.obs["name"].dtype, CategoricalDtype)
def test_set_default_index():
adata = read_csv(dataset_path=f"{_TEST_PATH}/dataset_index.csv")
assert adata.X.shape == (5, 4)
assert not adata.obs_names.name
assert adata.obs.index.values.tolist() == [f"{i}" for i in range(5)]
def test_set_given_str_index():
adata = read_csv(dataset_path=f"{_TEST_PATH}/dataset_basic.csv", index_column="los_days")
assert adata.X.shape == (5, 3)
assert adata.obs_names.name == "los_days"
assert adata.obs.index.values.tolist() == ["14", "7", "10", "11", "3"]
def test_set_given_int_index():
adata = read_csv(dataset_path=f"{_TEST_PATH}/dataset_basic.csv", index_column=1)
assert adata.X.shape == (5, 3)
assert adata.obs_names.name == "los_days"
assert adata.obs.index.values.tolist() == ["14", "7", "10", "11", "3"]
def test_move_single_column_misspelled():
with pytest.raises(ValueError):
_ = read_csv(dataset_path=f"{_TEST_PATH}/dataset_basic.csv", columns_obs_only=["b11_values"])
def test_move_single_column_to_obs():
adata = read_csv(dataset_path=f"{_TEST_PATH}/dataset_basic.csv", columns_obs_only=["b12_values"])
assert adata.X.shape == (5, 3)
assert list(adata.obs.columns) == ["b12_values"]
assert "b12_values" not in list(adata.var_names.values)
def test_move_multiple_columns_to_obs():
adata = read_csv(dataset_path=f"{_TEST_PATH}/dataset_basic.csv", columns_obs_only=["b12_values", "survival"])
assert adata.X.shape == (5, 2)
assert list(adata.obs.columns) == ["b12_values", "survival"]
assert "b12_values" not in list(adata.var_names.values) and "survival" not in list(adata.var_names.values)
def test_read_raises_error_with_duplicates_columns_only_single_1():
with pytest.raises(ValueError):
_ = read_csv(
dataset_path=f"{_TEST_PATH}/dataset_basic.csv",
columns_obs_only=["survival", "b12_values"],
columns_x_only=["survival", "b12_values"],
)
def test_read_raises_error_with_duplicates_columns_only_single_2():
with pytest.raises(ValueError):
_ = read_csv(
dataset_path=f"{_TEST_PATH}/dataset_basic.csv",
columns_obs_only=["survival"],
columns_x_only=["survival", "b12_values"],
)
def test_read_raises_error_with_duplicates_columns_only_multiple_1():
with pytest.raises(ValueError):
_ = read_csv(
dataset_path=f"{_TEST_PATH}",
columns_obs_only={
"dataset_non_num_with_missing": ["intcol"],
"dataset_num_with_missing": ["col1", "col2"],
},
columns_x_only={"dataset_non_num_with_missing": ["intcol"]},
)
def test_read_raises_error_with_duplicates_columns_only_multiple_2():
with pytest.raises(ValueError):
_ = read_csv(
dataset_path=f"{_TEST_PATH}",
columns_obs_only={
"dataset_non_num_with_missing": ["intcol"],
"dataset_num_with_missing": ["col1", "col2"],
},
columns_x_only={"dataset_non_num_with_missing": ["indexcol"], "dataset_num_with_missing": ["col3"]},
)
def test_move_single_column_to_x():
adata = read_csv(dataset_path=f"{_TEST_PATH}/dataset_basic.csv", columns_x_only=["b12_values"])
assert adata.X.shape == (5, 1)
assert list(adata.var_names) == ["b12_values"]
assert "b12_values" not in list(adata.obs.columns)
assert all(obs_names in list(adata.obs.columns) for obs_names in ["los_days", "patient_id", "survival"])
def test_move_multiple_columns_to_x():
adata = read_csv(dataset_path=f"{_TEST_PATH}/dataset_basic.csv", columns_x_only=["b12_values", "survival"])
assert adata.X.shape == (5, 2)
assert all(var_names in list(adata.var_names) for var_names in ["b12_values", "survival"])
assert all(obs_names in list(adata.obs.columns) for obs_names in ["los_days", "patient_id"])
assert all(var_names not in list(adata.obs.columns) for var_names in ["b12_values", "survival"])
def test_read_multiple_csv_with_x_only():
adatas = read_csv(
dataset_path=f"{_TEST_PATH}",
columns_x_only={"dataset_non_num_with_missing": ["strcol"], "dataset_num_with_missing": ["col1"]},
)
adata_ids = set(adatas.keys())
assert all(adata_id in adata_ids for adata_id in {"dataset_non_num_with_missing", "dataset_num_with_missing"})
assert set(adatas["dataset_non_num_with_missing"].obs.columns) == {
"indexcol",
"intcol",
"boolcol",
"binary_col",
"datetime",
}
assert set(adatas["dataset_num_with_missing"].obs.columns) == {"col" + str(i) for i in range(2, 4)}
assert set(adatas["dataset_non_num_with_missing"].var_names) == {"strcol"}
assert set(adatas["dataset_num_with_missing"].var_names) == {"col1"}
def test_read_multiple_csv_with_x_only_2():
adatas = read_csv(
dataset_path=f"{_TEST_PATH}",
columns_x_only={
"dataset_non_num_with_missing": ["strcol", "intcol", "boolcol"],
"dataset_num_with_missing": ["col1", "col3"],
},
)
adata_ids = set(adatas.keys())
assert all(adata_id in adata_ids for adata_id in {"dataset_non_num_with_missing", "dataset_num_with_missing"})
assert set(adatas["dataset_non_num_with_missing"].obs.columns) == {"indexcol", "binary_col", "datetime"}
assert set(adatas["dataset_num_with_missing"].obs.columns) == {"col2"}
assert set(adatas["dataset_non_num_with_missing"].var_names) == {"strcol", "intcol", "boolcol"}
assert set(adatas["dataset_num_with_missing"].var_names) == {"col1", "col3"}
def test_read_fhir_json():
adata = read_fhir(_TEST_PATH_FHIR)
assert adata.shape == (4928, 80)
assert "resource.birthDate" in adata.obs.columns
def test_read_fhir_json_obs_only():
adata = read_fhir(_TEST_PATH_FHIR, columns_obs_only=["fullUrl"])
assert adata.shape == (4928, 79)
assert "fullUrl" in adata.obs.columns