[e5f1db]: / tests / preprocessing / test_imputation.py

Download this file

359 lines (253 with data), 13.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os
import warnings
from collections.abc import Iterable
from pathlib import Path
import dask.array as da
import numpy as np
import pytest
from anndata import AnnData
from scipy import sparse
from sklearn.exceptions import ConvergenceWarning
from ehrapy.anndata.anndata_ext import _are_ndarrays_equal, _is_val_missing, _to_dense_matrix
from ehrapy.preprocessing._imputation import (
_warn_imputation_threshold,
explicit_impute,
knn_impute,
mice_forest_impute,
miss_forest_impute,
simple_impute,
)
from tests.conftest import ARRAY_TYPES, TEST_DATA_PATH
CURRENT_DIR = Path(__file__).parent
_TEST_PATH = f"{TEST_DATA_PATH}/imputation"
def _base_check_imputation(
adata_before_imputation: AnnData,
adata_after_imputation: AnnData,
before_imputation_layer: str | None = None,
after_imputation_layer: str | None = None,
imputed_var_names: Iterable[str] | None = None,
):
"""Provides a base check for all imputations:
- Imputation doesn't leave any NaN behind
- Imputation doesn't modify anything in non-imputated columns (if the imputation on a subset was requested)
- Imputation doesn't modify any data that wasn't NaN
Args:
adata_before_imputation: AnnData before imputation
adata_after_imputation: AnnData after imputation
before_imputation_layer: Layer to consider in the original ``AnnData``, ``X`` if not specified
after_imputation_layer: Layer to consider in the imputated ``AnnData``, ``X`` if not specified
imputed_var_names: Names of the features that were imputated, will consider all of them if not specified
Raises:
AssertionError: If any of the checks fail.
"""
# Convert dask arrays to numpy arrays
if isinstance(adata_before_imputation.X, da.Array):
adata_before_imputation.X = adata_before_imputation.X.compute()
if isinstance(adata_after_imputation.X, da.Array):
adata_after_imputation.X = adata_after_imputation.X.compute()
layer_before = _to_dense_matrix(adata_before_imputation, before_imputation_layer)
layer_after = _to_dense_matrix(adata_after_imputation, after_imputation_layer)
if layer_before.shape != layer_after.shape:
raise AssertionError("The shapes of the two layers do not match")
var_indices = (
np.arange(layer_before.shape[1])
if imputed_var_names is None
else [
adata_before_imputation.var_names.get_loc(var_name)
for var_name in imputed_var_names
if var_name in imputed_var_names
]
)
before_nan_mask = _is_val_missing(layer_before)
imputed_mask = np.zeros(layer_before.shape[1], dtype=bool)
imputed_mask[var_indices] = True
# Ensure no NaN remains in the imputed columns of layer_after
if np.any(before_nan_mask[:, imputed_mask] & _is_val_missing(layer_after[:, imputed_mask])):
raise AssertionError("NaN found in imputed columns of layer_after.")
# Ensure unchanged values outside imputed columns
unchanged_mask = ~imputed_mask
if not _are_ndarrays_equal(layer_before[:, unchanged_mask], layer_after[:, unchanged_mask]):
raise AssertionError("Values outside imputed columns were modified.")
# Ensure imputation does not alter non-NaN values in the imputed columns
imputed_non_nan_mask = (~before_nan_mask) & imputed_mask
if not _are_ndarrays_equal(layer_before[imputed_non_nan_mask], layer_after[imputed_non_nan_mask]):
raise AssertionError("Non-NaN values in imputed columns were modified.")
# If reaching here: all checks passed
return
def test_base_check_imputation_incompatible_shapes(impute_num_adata):
adata_imputed = knn_impute(impute_num_adata, copy=True)
with pytest.raises(AssertionError):
_base_check_imputation(impute_num_adata, adata_imputed[1:, :])
with pytest.raises(AssertionError):
_base_check_imputation(impute_num_adata, adata_imputed[:, 1:])
def test_base_check_imputation_nan_detected_after_complete_imputation(impute_num_adata):
adata_imputed = knn_impute(impute_num_adata, copy=True)
adata_imputed.X[0, 2] = np.nan
with pytest.raises(AssertionError):
_base_check_imputation(impute_num_adata, adata_imputed)
def test_base_check_imputation_nan_detected_after_partial_imputation(impute_num_adata):
var_names = ("col2", "col3")
adata_imputed = knn_impute(impute_num_adata, var_names=var_names, copy=True)
adata_imputed.X[0, 2] = np.nan
with pytest.raises(AssertionError):
_base_check_imputation(impute_num_adata, adata_imputed, imputed_var_names=var_names)
def test_base_check_imputation_nan_ignored_if_not_in_imputed_column(impute_num_adata):
var_names = ("col2", "col3")
adata_imputed = knn_impute(impute_num_adata, var_names=var_names, copy=True)
# col1 has a NaN at row 2, should get ignored
_base_check_imputation(impute_num_adata, adata_imputed, imputed_var_names=var_names)
def test_base_check_imputation_change_detected_in_non_imputed_column(impute_num_adata):
var_names = ("col2", "col3")
adata_imputed = knn_impute(impute_num_adata, var_names=var_names, copy=True)
# col1 has a NaN at row 2, let's simulate it has been imputed by mistake
adata_imputed.X[2, 0] = 42.0
with pytest.raises(AssertionError):
_base_check_imputation(impute_num_adata, adata_imputed, imputed_var_names=var_names)
def test_base_check_imputation_change_detected_in_imputed_column(impute_num_adata):
adata_imputed = knn_impute(impute_num_adata, copy=True)
# col3 didn't have a NaN at row 1, let's simulate it has been modified by mistake
adata_imputed.X[1, 2] = 42.0
with pytest.raises(AssertionError):
_base_check_imputation(impute_num_adata, adata_imputed)
def test_mean_impute_no_copy(impute_num_adata):
adata_not_imputed = impute_num_adata.copy()
simple_impute(impute_num_adata)
_base_check_imputation(adata_not_imputed, impute_num_adata)
def test_mean_impute_copy(impute_num_adata):
adata_imputed = simple_impute(impute_num_adata, copy=True)
assert id(impute_num_adata) != id(adata_imputed)
_base_check_imputation(impute_num_adata, adata_imputed)
def test_mean_impute_throws_error_non_numerical(impute_adata):
with pytest.raises(ValueError):
simple_impute(impute_adata)
def test_mean_impute_subset(impute_adata):
var_names = ("intcol", "indexcol")
adata_imputed = simple_impute(impute_adata, var_names=var_names, copy=True)
_base_check_imputation(impute_adata, adata_imputed, imputed_var_names=var_names)
assert np.any([item != item for item in adata_imputed.X[::, 3:4]])
def test_median_impute_no_copy(impute_num_adata):
adata_not_imputed = impute_num_adata.copy()
simple_impute(impute_num_adata, strategy="median")
_base_check_imputation(adata_not_imputed, impute_num_adata)
def test_median_impute_copy(impute_num_adata):
adata_imputed = simple_impute(impute_num_adata, strategy="median", copy=True)
_base_check_imputation(impute_num_adata, adata_imputed)
assert id(impute_num_adata) != id(adata_imputed)
def test_median_impute_throws_error_non_numerical(impute_adata):
with pytest.raises(ValueError):
simple_impute(impute_adata, strategy="median")
def test_median_impute_subset(impute_adata):
var_names = ("intcol", "indexcol")
adata_imputed = simple_impute(impute_adata, var_names=var_names, strategy="median", copy=True)
_base_check_imputation(impute_adata, adata_imputed, imputed_var_names=var_names)
def test_most_frequent_impute_no_copy(impute_adata):
adata_not_imputed = impute_adata.copy()
simple_impute(impute_adata, strategy="most_frequent")
_base_check_imputation(adata_not_imputed, impute_adata)
def test_most_frequent_impute_copy(impute_adata):
adata_imputed = simple_impute(impute_adata, strategy="most_frequent", copy=True)
_base_check_imputation(impute_adata, adata_imputed)
assert id(impute_adata) != id(adata_imputed)
def test_unknown_simple_imputation_strategy(impute_adata):
with pytest.raises(ValueError):
simple_impute(impute_adata, strategy="invalid_strategy", copy=True) # type: ignore
def test_most_frequent_impute_subset(impute_adata):
var_names = ("intcol", "strcol")
adata_imputed = simple_impute(impute_adata, var_names=var_names, strategy="most_frequent", copy=True)
_base_check_imputation(impute_adata, adata_imputed, imputed_var_names=var_names)
def test_knn_impute_check_backend(impute_num_adata):
knn_impute(impute_num_adata, backend="faiss", copy=True)
knn_impute(impute_num_adata, backend="scikit-learn", copy=True)
with pytest.raises(
ValueError,
match="Unknown backend 'invalid_backend' for KNN imputation. Choose between 'scikit-learn' and 'faiss'.",
):
knn_impute(impute_num_adata, backend="invalid_backend") # type: ignore
def test_knn_impute_no_copy(impute_num_adata):
adata_not_imputed = impute_num_adata.copy()
knn_impute(impute_num_adata)
_base_check_imputation(adata_not_imputed, impute_num_adata)
def test_knn_impute_copy(impute_num_adata):
adata_imputed = knn_impute(impute_num_adata, n_neighbors=3, copy=True)
_base_check_imputation(impute_num_adata, adata_imputed)
assert id(impute_num_adata) != id(adata_imputed)
def test_knn_impute_non_numerical_data(impute_adata):
with pytest.raises(ValueError):
knn_impute(impute_adata, n_neighbors=3, copy=True)
def test_knn_impute_numerical_data(impute_num_adata):
adata_imputed = knn_impute(impute_num_adata, copy=True)
_base_check_imputation(impute_num_adata, adata_imputed)
def test_missforest_impute_non_numerical_data(impute_adata):
with pytest.raises(ValueError):
miss_forest_impute(impute_adata, copy=True)
def test_missforest_impute_numerical_data(impute_num_adata):
warnings.filterwarnings("ignore", category=ConvergenceWarning)
adata_imputed = miss_forest_impute(impute_num_adata, copy=True)
_base_check_imputation(impute_num_adata, adata_imputed)
def test_missforest_impute_subset(impute_num_adata):
warnings.filterwarnings("ignore", category=ConvergenceWarning)
var_names = ("col2", "col3")
adata_imputed = miss_forest_impute(impute_num_adata, var_names=var_names, copy=True)
_base_check_imputation(impute_num_adata, adata_imputed, imputed_var_names=var_names)
@pytest.mark.parametrize(
"array_type,expected_error",
[
(np.array, None),
(da.from_array, NotImplementedError),
(sparse.csr_matrix, NotImplementedError),
],
)
def test_miceforest_array_types(impute_num_adata, array_type, expected_error):
impute_num_adata.X = array_type(impute_num_adata.X)
if expected_error:
with pytest.raises(expected_error):
mice_forest_impute(impute_num_adata, copy=True)
@pytest.mark.skipif(os.name == "Darwin", reason="miceforest Imputation not supported by MacOS.")
def test_miceforest_impute_no_copy(impute_iris_adata):
adata_not_imputed = impute_iris_adata.copy()
mice_forest_impute(impute_iris_adata)
_base_check_imputation(adata_not_imputed, impute_iris_adata)
@pytest.mark.skipif(os.name == "Darwin", reason="miceforest Imputation not supported by MacOS.")
def test_miceforest_impute_copy(impute_iris_adata):
adata_imputed = mice_forest_impute(impute_iris_adata, copy=True)
_base_check_imputation(impute_iris_adata, adata_imputed)
assert id(impute_iris_adata) != id(adata_imputed)
@pytest.mark.skipif(os.name == "Darwin", reason="miceforest Imputation not supported by MacOS.")
def test_miceforest_impute_non_numerical_data(impute_titanic_adata):
with pytest.raises(ValueError):
mice_forest_impute(impute_titanic_adata)
@pytest.mark.skipif(os.name == "Darwin", reason="miceforest Imputation not supported by MacOS.")
def test_miceforest_impute_numerical_data(impute_iris_adata):
adata_not_imputed = impute_iris_adata.copy()
mice_forest_impute(impute_iris_adata)
_base_check_imputation(adata_not_imputed, impute_iris_adata)
@pytest.mark.parametrize(
"array_type,expected_error",
[
(np.array, None),
(da.from_array, None),
(sparse.csr_matrix, NotImplementedError),
],
)
def test_explicit_impute_array_types(impute_num_adata, array_type, expected_error):
impute_num_adata.X = array_type(impute_num_adata.X)
if expected_error:
with pytest.raises(expected_error):
explicit_impute(impute_num_adata, replacement=1011, copy=True)
@pytest.mark.parametrize("array_type", ARRAY_TYPES)
def test_explicit_impute_all(array_type, impute_num_adata):
impute_num_adata.X = array_type(impute_num_adata.X)
warnings.filterwarnings("ignore", category=FutureWarning)
adata_imputed = explicit_impute(impute_num_adata, replacement=1011, copy=True)
_base_check_imputation(impute_num_adata, adata_imputed)
assert np.sum([adata_imputed.X == 1011]) == 3
@pytest.mark.parametrize("array_type", ARRAY_TYPES)
def test_explicit_impute_subset(impute_adata, array_type):
impute_adata.X = array_type(impute_adata.X)
adata_imputed = explicit_impute(impute_adata, replacement={"strcol": "REPLACED", "intcol": 1011}, copy=True)
_base_check_imputation(impute_adata, adata_imputed, imputed_var_names=("strcol", "intcol"))
assert np.sum([adata_imputed.X == 1011]) == 1
assert np.sum([adata_imputed.X == "REPLACED"]) == 1
def test_warning(impute_num_adata):
warning_results = _warn_imputation_threshold(impute_num_adata, threshold=20, var_names=None)
assert warning_results == {"col1": 25, "col3": 50}