[e5f1db]: / tests / anndata / test_feature_specifications.py

Download this file

175 lines (145 with data), 5.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import pandas as pd
import pytest
import ehrapy as ep
from ehrapy.anndata import check_feature_types, df_to_anndata
from ehrapy.anndata._constants import CATEGORICAL_TAG, DATE_TAG, FEATURE_TYPE_KEY, NUMERIC_TAG
from tests.conftest import TEST_DATA_PATH
IMPUTATION_DATA_PATH = TEST_DATA_PATH / "imputation"
@pytest.fixture
def adata():
df = pd.DataFrame(
{
"feature1": [1, 2, 2, 0],
"feature2": ["a", "b", "c", "d"],
"feature3": [1.0, 2.0, 3.0, 2.0],
"feature4": [0.0, 0.3, 0.5, 4.6],
"feature5": ["a", "b", np.nan, "d"],
"feature6": [1.4, 0.2, np.nan, np.nan],
"feature7": pd.to_datetime(["2021-01-01", "2024-04-16", "2021-01-03", "2067-07-02"]),
}
)
adata = df_to_anndata(df)
return adata
def test_feature_type_inference(adata):
ep.ad.infer_feature_types(adata, output=None)
assert adata.var[FEATURE_TYPE_KEY]["feature1"] == CATEGORICAL_TAG
assert adata.var[FEATURE_TYPE_KEY]["feature2"] == CATEGORICAL_TAG
assert adata.var[FEATURE_TYPE_KEY]["feature3"] == CATEGORICAL_TAG
assert adata.var[FEATURE_TYPE_KEY]["feature4"] == NUMERIC_TAG
assert adata.var[FEATURE_TYPE_KEY]["feature5"] == CATEGORICAL_TAG
assert adata.var[FEATURE_TYPE_KEY]["feature6"] == NUMERIC_TAG
assert adata.var[FEATURE_TYPE_KEY]["feature7"] == DATE_TAG
def test_check_feature_types(adata):
@check_feature_types
def test_func(adata):
pass
assert FEATURE_TYPE_KEY not in adata.var.keys()
test_func(adata)
assert FEATURE_TYPE_KEY in adata.var.keys()
ep.ad.infer_feature_types(adata, output=None)
test_func(adata)
assert FEATURE_TYPE_KEY in adata.var.keys()
@check_feature_types
def test_func_with_return(adata):
return adata
adata = test_func_with_return(adata)
assert FEATURE_TYPE_KEY in adata.var.keys()
def test_feature_types_impute_num_adata(impute_num_adata):
ep.ad.infer_feature_types(impute_num_adata, output=None)
assert np.all(impute_num_adata.var[FEATURE_TYPE_KEY] == [NUMERIC_TAG, NUMERIC_TAG, NUMERIC_TAG])
def test_feature_types_impute_adata(impute_adata):
ep.ad.infer_feature_types(impute_adata, output=None)
assert np.all(impute_adata.var[FEATURE_TYPE_KEY] == [NUMERIC_TAG, NUMERIC_TAG, CATEGORICAL_TAG, CATEGORICAL_TAG])
def test_feature_types_impute_iris(impute_iris_adata):
ep.ad.infer_feature_types(impute_iris_adata, output=None)
assert np.all(
impute_iris_adata.var[FEATURE_TYPE_KEY] == [NUMERIC_TAG, NUMERIC_TAG, NUMERIC_TAG, NUMERIC_TAG, CATEGORICAL_TAG]
)
def test_feature_types_impute_feature_types_titanic(impute_titanic_adata):
ep.ad.infer_feature_types(impute_titanic_adata, output=None)
impute_titanic_adata.var[FEATURE_TYPE_KEY] = [
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
NUMERIC_TAG,
NUMERIC_TAG,
NUMERIC_TAG,
NUMERIC_TAG,
NUMERIC_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
]
def test_date_detection():
df = pd.DataFrame(
{
"date1": pd.to_datetime(["2021-01-01", "2024-04-16", "2021-01-03"]),
"date2": ["2021-01-01", "2024-04-16", "2021-01-03"],
"date3": ["2024-04-16 07:45:13", "2024-04-16", "2024-04"],
"not_date": ["not_a_date", "2024-04-16", "2021-01-03"],
}
)
adata = df_to_anndata(df)
ep.ad.infer_feature_types(adata, output=None)
assert np.all(adata.var[FEATURE_TYPE_KEY] == [DATE_TAG, DATE_TAG, DATE_TAG, CATEGORICAL_TAG])
def test_all_possible_types():
df = pd.DataFrame(
{
"f1": [42, 17, 93, 235],
"f2": ["apple", "banana", "cherry", "date"],
"f3": [1, 2, 3, 1],
"f4": [1.0, 2.0, 1.0, 2.0],
"f5": ["20200101", "20200102", "20200103", "20200104"],
"f6": [True, False, True, False],
"f7": [np.nan, 1, np.nan, 2],
"f8": ["apple", 1, "banana", 2],
"f9": ["001", "002", "003", "002"],
"f10": ["5", "5", "5", "5"],
"f11": ["A1", "A2", "B1", "B2"],
"f12": [90210, 10001, 60614, 80588],
"f13": [0.25, 0.5, 0.75, 1.0],
"f14": ["2125551234", "2125555678", "2125559012", "2125553456"],
"f15": ["$100", "€150", "£200", "¥250"],
"f16": [101, 102, 103, 104],
"f17": [1e3, 5e-2, 3.1e2, 2.7e-1],
"f18": ["23.5", "324", "4.5", "0.5"],
"f19": [1, 2, 3, 4],
"f20": ["001", "002", "003", "004"],
}
)
adata = df_to_anndata(df)
ep.ad.infer_feature_types(adata, output=None)
assert np.all(
adata.var[FEATURE_TYPE_KEY]
== [
NUMERIC_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
DATE_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
NUMERIC_TAG,
CATEGORICAL_TAG,
NUMERIC_TAG,
NUMERIC_TAG,
NUMERIC_TAG,
CATEGORICAL_TAG,
NUMERIC_TAG,
NUMERIC_TAG,
NUMERIC_TAG,
NUMERIC_TAG,
NUMERIC_TAG,
]
)
def test_partial_annotation(adata):
adata.var[FEATURE_TYPE_KEY] = ["dummy", np.nan, np.nan, NUMERIC_TAG, None, np.nan, None]
ep.ad.infer_feature_types(adata, output=None)
assert np.all(
adata.var[FEATURE_TYPE_KEY]
== ["dummy", CATEGORICAL_TAG, CATEGORICAL_TAG, NUMERIC_TAG, CATEGORICAL_TAG, NUMERIC_TAG, DATE_TAG]
)