[e5f1db]: / tests / anndata / test_anndata_ext.py

Download this file

526 lines (419 with data), 19.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
from __future__ import annotations
import numpy as np
import pandas as pd
import pytest
from anndata import AnnData
from pandas import DataFrame
from pandas.testing import assert_frame_equal
import ehrapy as ep
from ehrapy.anndata._constants import CATEGORICAL_TAG, FEATURE_TYPE_KEY, NUMERIC_TAG
from ehrapy.anndata.anndata_ext import (
NotEncodedError,
_are_ndarrays_equal,
_assert_encoded,
_is_val_missing,
anndata_to_df,
assert_numeric_vars,
delete_from_obs,
df_to_anndata,
get_numeric_vars,
move_to_obs,
move_to_x,
set_numeric_vars,
)
from tests.conftest import TEST_DATA_PATH
@pytest.fixture
def setup_df_to_anndata() -> tuple[DataFrame, list, list, list]:
col1_val = ["str" + str(idx) for idx in range(100)]
col2_val = ["another_str" + str(idx) for idx in range(100)]
col3_val = list(range(100))
df = DataFrame({"col1": col1_val, "col2": col2_val, "col3": col3_val})
return df, col1_val, col2_val, col3_val
@pytest.fixture
def setup_binary_df_to_anndata() -> DataFrame:
col1_val = ["str" + str(idx) for idx in range(100)]
col2_val = ["another_str" + str(idx) for idx in range(100)]
col3_val = [0 for _ in range(100)]
col4_val = [1.0 for _ in range(100)]
col5_val = [0.0 if idx % 2 == 0 else np.nan for idx in range(100)]
col6_val = [idx % 2 for idx in range(100)]
col7_val = [float(idx % 2) for idx in range(100)]
col8_val = [idx % 3 if idx % 3 in {0, 1} else np.nan for idx in range(100)]
df = DataFrame(
{
"col1": col1_val,
"col2": col2_val,
"col3": col3_val,
"col4": col4_val,
"col5": col5_val,
"col6_binary_int": col6_val,
"col7_binary_float": col7_val,
"col8_binary_missing_values": col8_val,
}
)
return df
@pytest.fixture
def setup_anndata_to_df() -> tuple[list, list, list]:
col1_val = ["patient" + str(idx) for idx in range(100)]
col2_val = ["feature" + str(idx) for idx in range(100)]
col3_val = list(range(100))
return col1_val, col2_val, col3_val
def test_move_to_obs_only_num(adata_move_obs_num: AnnData):
move_to_obs(adata_move_obs_num, ["los_days", "b12_values"])
assert list(adata_move_obs_num.obs.columns) == ["los_days", "b12_values"]
assert {str(col) for col in adata_move_obs_num.obs.dtypes} == {"float32"}
assert_frame_equal(
adata_move_obs_num.obs,
DataFrame(
{"los_days": [14.0, 7.0, 10.0, 11.0, 3.0], "b12_values": [500.0, 330.0, 800.0, 765.0, 800.0]},
index=[str(idx) for idx in range(5)],
).astype({"b12_values": "float32", "los_days": "float32"}),
)
def test_move_to_obs_mixed(adata_move_obs_mix: AnnData):
move_to_obs(adata_move_obs_mix, ["name", "clinic_id"])
assert set(adata_move_obs_mix.obs.columns) == {"name", "clinic_id"}
assert {str(col) for col in adata_move_obs_mix.obs.dtypes} == {"float32", "category"}
assert_frame_equal(
adata_move_obs_mix.obs,
DataFrame(
{"clinic_id": list(range(1, 6)), "name": ["foo", "bar", "baz", "buz", "ber"]},
index=[str(idx) for idx in range(5)],
).astype({"clinic_id": "float32", "name": "category"}),
)
def test_move_to_obs_copy_obs(adata_move_obs_mix: AnnData):
adata_dim_old = adata_move_obs_mix.X.shape
move_to_obs(adata_move_obs_mix, ["name", "clinic_id"], copy_obs=True)
assert set(adata_move_obs_mix.obs.columns) == {"name", "clinic_id"}
assert adata_move_obs_mix.X.shape == adata_dim_old
assert {str(col) for col in adata_move_obs_mix.obs.dtypes} == {"float32", "category"}
assert_frame_equal(
adata_move_obs_mix.obs,
DataFrame(
{"clinic_id": list(range(1, 6)), "name": ["foo", "bar", "baz", "buz", "ber"]},
index=[str(idx) for idx in range(5)],
).astype({"clinic_id": "float32", "name": "category"}),
)
def test_move_to_obs_invalid_column_name(adata_move_obs_mix: AnnData):
with pytest.raises(ValueError):
_ = move_to_obs(adata_move_obs_mix, "nam")
_ = move_to_obs(adata_move_obs_mix, "clic_id")
_ = move_to_obs(adata_move_obs_mix, ["nam", "clic_id"])
def test_move_to_x(adata_move_obs_mix):
move_to_obs(adata_move_obs_mix, ["name"], copy_obs=True)
move_to_obs(adata_move_obs_mix, ["clinic_id"], copy_obs=False)
new_adata_non_num = move_to_x(adata_move_obs_mix, ["name"])
new_adata_num = move_to_x(adata_move_obs_mix, ["clinic_id"])
assert set(new_adata_non_num.obs.columns) == {"name", "clinic_id"}
assert set(new_adata_num.obs.columns) == {"name"}
assert {str(col) for col in new_adata_num.obs.dtypes} == {"category"}
assert {str(col) for col in new_adata_non_num.obs.dtypes} == {"float32", "category"}
assert_frame_equal(
new_adata_non_num.var,
DataFrame(
{FEATURE_TYPE_KEY: [NUMERIC_TAG, NUMERIC_TAG, CATEGORICAL_TAG]},
index=["los_days", "b12_values", "name"],
),
)
assert_frame_equal(
new_adata_num.var,
DataFrame(
{FEATURE_TYPE_KEY: [NUMERIC_TAG, NUMERIC_TAG, CATEGORICAL_TAG, np.nan]},
index=["los_days", "b12_values", "name", "clinic_id"],
),
)
ep.ad.infer_feature_types(new_adata_num, output=None)
assert np.all(new_adata_num.var[FEATURE_TYPE_KEY] == [NUMERIC_TAG, NUMERIC_TAG, CATEGORICAL_TAG, NUMERIC_TAG])
assert_frame_equal(
new_adata_num.obs,
DataFrame(
{"name": ["foo", "bar", "baz", "buz", "ber"]},
index=[str(idx) for idx in range(5)],
).astype({"name": "category"}),
)
assert_frame_equal(
new_adata_non_num.obs,
DataFrame(
{"name": ["foo", "bar", "baz", "buz", "ber"], "clinic_id": list(range(1, 6))},
index=[str(idx) for idx in range(5)],
).astype({"clinic_id": "float32", "name": "category"}),
)
def test_move_to_x_copy_x(adata_move_obs_mix):
move_to_obs(adata_move_obs_mix, ["name"], copy_obs=False)
obs_df = adata_move_obs_mix.obs.copy()
new_adata = move_to_x(adata_move_obs_mix, ["name"], copy_x=True)
assert_frame_equal(new_adata.obs, obs_df)
def test_move_to_x_invalid_column_names(adata_move_obs_mix):
move_to_obs(adata_move_obs_mix, ["name"], copy_obs=True)
move_to_obs(adata_move_obs_mix, ["clinic_id"], copy_obs=False)
with pytest.raises(ValueError):
_ = move_to_x(adata_move_obs_mix, ["blabla1"])
_ = move_to_x(adata_move_obs_mix, ["blabla1", "blabla2"])
def test_move_to_x_move_to_obs(adata_move_obs_mix):
adata_dim_old = adata_move_obs_mix.X.shape
# moving columns from X to obs and back
# case 1: move some column from obs to X and this col was copied previously from X to obs
move_to_obs(adata_move_obs_mix, ["name"], copy_obs=True)
adata = move_to_x(adata_move_obs_mix, ["name"])
assert {"name"}.issubset(set(adata.var_names))
assert adata.X.shape == adata_dim_old
delete_from_obs(adata, ["name"])
# case 2: move some column from obs to X and this col was previously moved inplace from X to obs
move_to_obs(adata, ["clinic_id"], copy_obs=False)
adata = move_to_x(adata, ["clinic_id"])
assert not {"clinic_id"}.issubset(set(adata.obs.columns))
assert {"clinic_id"}.issubset(set(adata.var_names))
assert adata.X.shape == adata_dim_old
# case 3: move multiple columns from obs to X and some of them were copied or moved inplace previously from X to obs
move_to_obs(adata, ["los_days"], copy_obs=True)
move_to_obs(adata, ["b12_values"], copy_obs=False)
adata = move_to_x(adata, ["los_days", "b12_values"])
delete_from_obs(adata, ["los_days"])
assert not {"los_days"}.issubset(
set(adata.obs.columns)
) # check if the copied column was removed from obs by delete_from_obs()
assert not {"b12_values"}.issubset(set(adata.obs.columns))
assert {"los_days", "b12_values"}.issubset(set(adata.var_names))
assert adata.X.shape == adata_dim_old
def test_delete_from_obs(adata_move_obs_mix):
adata = move_to_obs(adata_move_obs_mix, ["los_days"], copy_obs=True)
adata = delete_from_obs(adata, ["los_days"])
assert not {"los_days"}.issubset(set(adata.obs.columns))
assert {"los_days"}.issubset(set(adata.var_names))
def test_df_to_anndata_simple(setup_df_to_anndata):
df, col1_val, col2_val, col3_val = setup_df_to_anndata
expected_x = np.array([col1_val, col2_val, col3_val], dtype="object").transpose()
adata = df_to_anndata(df)
assert adata.X.dtype == "object"
assert adata.X.shape == (100, 3)
np.testing.assert_array_equal(adata.X, expected_x)
def test_df_to_anndata_index_column(setup_df_to_anndata):
df, col1_val, col2_val, col3_val = setup_df_to_anndata
expected_x = np.array([col2_val, col3_val], dtype="object").transpose()
adata = df_to_anndata(df, index_column="col1")
assert adata.X.dtype == "object"
assert adata.X.shape == (100, 2)
np.testing.assert_array_equal(adata.X, expected_x)
assert list(adata.obs.index) == col1_val
assert adata.obs.index.name == "col1"
def test_df_to_anndata_index_column_num(setup_df_to_anndata):
df, col1_val, col2_val, col3_val = setup_df_to_anndata
expected_x = np.array([col2_val, col3_val], dtype="object").transpose()
adata = df_to_anndata(df, index_column=0)
assert adata.X.dtype == "object"
assert adata.X.shape == (100, 2)
np.testing.assert_array_equal(adata.X, expected_x)
assert list(adata.obs.index) == col1_val
assert adata.obs.index.name == "col1"
def test_df_to_anndata_index_column_index():
d = {"col1": [0, 1, 2, 3], "col2": pd.Series([2, 3])}
df = pd.DataFrame(data=d, index=[0, 1, 2, 3])
df.index.set_names("quarter", inplace=True)
adata = ep.ad.df_to_anndata(df, index_column="quarter")
assert adata.obs.index.name == "quarter"
assert list(adata.obs.index) == ["0", "1", "2", "3"]
def test_df_to_anndata_invalid_index_throws_error(setup_df_to_anndata):
df, col1_val, col2_val, col3_val = setup_df_to_anndata
with pytest.raises(ValueError):
_ = df_to_anndata(df, index_column="UnknownCol")
def test_df_to_anndata_cols_obs_only(setup_df_to_anndata):
df, col1_val, col2_val, col3_val = setup_df_to_anndata
adata = df_to_anndata(df, columns_obs_only=["col1", "col2"])
assert adata.X.dtype == "float32"
assert adata.X.shape == (100, 1)
assert_frame_equal(
adata.obs,
DataFrame({"col1": col1_val, "col2": col2_val}, index=[str(idx) for idx in range(100)]).astype("category"),
)
def test_df_to_anndata_all_num():
test_array = np.random.default_rng().integers(0, 100, (4, 5))
df = DataFrame(test_array, columns=["col" + str(idx) for idx in range(5)])
adata = df_to_anndata(df)
assert adata.X.dtype == "float32"
np.testing.assert_array_equal(test_array, adata.X)
def test_df_to_anndata_index_col_obs_only(setup_df_to_anndata):
"""Passing index_column and columns_obs_only at the same time."""
df, col1_val, col2_val, col3_val = setup_df_to_anndata
adata = df_to_anndata(df, index_column="col1", columns_obs_only=["col1", "col2"])
assert list(adata.obs.index) == col1_val
def test_anndata_to_df_simple(setup_anndata_to_df):
col1_val, col2_val, col3_val = setup_anndata_to_df
expected_df = DataFrame({"col1": col1_val, "col2": col2_val, "col3": col3_val}, dtype="object")
adata_x = np.array([col1_val, col2_val, col3_val], dtype="object").transpose()
adata = AnnData(
X=adata_x,
obs=DataFrame(index=list(range(100))),
var=DataFrame(index=["col" + str(idx) for idx in range(1, 4)]),
)
anndata_df = anndata_to_df(adata)
assert_frame_equal(anndata_df, expected_df)
def test_anndata_to_df_all_from_obs(setup_anndata_to_df):
col1_val, col2_val, col3_val = setup_anndata_to_df
expected_df = DataFrame({"col1": col1_val, "col2": col2_val, "col3": col3_val})
obs = DataFrame({"col2": col2_val, "col3": col3_val})
adata_x = np.array([col1_val], dtype="object").transpose()
adata = AnnData(X=adata_x, obs=obs, var=DataFrame(index=["col1"]))
anndata_df = anndata_to_df(adata, obs_cols=list(adata.obs.columns))
assert_frame_equal(anndata_df, expected_df)
def test_anndata_to_df_some_from_obs(setup_anndata_to_df):
col1_val, col2_val, col3_val = setup_anndata_to_df
expected_df = DataFrame({"col1": col1_val, "col3": col3_val})
obs = DataFrame({"col2": col2_val, "col3": col3_val})
adata_x = np.array([col1_val], dtype="object").transpose()
adata = AnnData(X=adata_x, obs=obs, var=DataFrame(index=["col1"]))
anndata_df = anndata_to_df(adata, obs_cols=["col3"])
assert_frame_equal(anndata_df, expected_df)
def test_anndata_to_df_throws_error_with_empty_obs():
col1_val = ["patient" + str(idx) for idx in range(100)]
adata_x = np.array([col1_val], dtype="object").transpose()
adata = AnnData(X=adata_x, obs=DataFrame(index=list(range(100))), var=DataFrame(index=["col1"]))
with pytest.raises(ValueError):
_ = anndata_to_df(adata, obs_cols=["some_missing_column"])
def test_anndata_to_df_all_columns(setup_anndata_to_df):
col1_val, col2_val, col3_val = setup_anndata_to_df
expected_df = DataFrame({"col1": col1_val})
var = DataFrame(index=["col1"])
adata_x = np.array([col1_val], dtype="object").transpose()
adata = AnnData(X=adata_x, obs=DataFrame({"col2": col2_val, "col3": col3_val}), var=var)
anndata_df = anndata_to_df(adata, obs_cols=list(adata.var.columns))
assert_frame_equal(anndata_df, expected_df)
def test_anndata_to_df_layers(setup_anndata_to_df):
col1_val, col2_val, col3_val = setup_anndata_to_df
expected_df = DataFrame({"col1": col1_val, "col2": col2_val, "col3": col3_val})
obs = DataFrame({"col2": col2_val, "col3": col3_val})
adata_x = np.array([col1_val], dtype="object").transpose()
adata = AnnData(X=adata_x, obs=obs, var=DataFrame(index=["col1"]), layers={"raw": adata_x.copy()})
anndata_df = anndata_to_df(adata, obs_cols=list(adata.obs.columns), layer="raw")
assert_frame_equal(anndata_df, expected_df)
def test_detect_binary_columns(setup_binary_df_to_anndata):
adata = df_to_anndata(setup_binary_df_to_anndata)
ep.ad.infer_feature_types(adata, output=None)
assert_frame_equal(
adata.var,
DataFrame(
{
FEATURE_TYPE_KEY: [
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
CATEGORICAL_TAG,
]
},
index=[
"col1",
"col2",
"col3",
"col4",
"col5",
"col6_binary_int",
"col7_binary_float",
"col8_binary_missing_values",
],
),
)
def test_detect_mixed_binary_columns():
df = pd.DataFrame(
{"Col1": list(range(4)), "Col2": ["str" + str(i) for i in range(4)], "Col3": [1.0, 0.0, np.nan, 1.0]}
)
adata = ep.ad.df_to_anndata(df)
ep.ad.infer_feature_types(adata, output=None)
assert_frame_equal(
adata.var,
DataFrame(
{FEATURE_TYPE_KEY: [NUMERIC_TAG, CATEGORICAL_TAG, CATEGORICAL_TAG]},
index=["Col1", "Col2", "Col3"],
),
)
@pytest.fixture
def adata_strings_encoded():
obs_data = {"ID": ["Patient1", "Patient2", "Patient3"], "Age": [31, 94, 62]}
X_strings = np.array(
[
[1, 3.4, "A string", "A different string"],
[2, 5.4, "Silly string", "A different string"],
[2, 5.7, "A string", "What string?"],
],
dtype=pd.StringDtype,
)
var_strings = {
"Feature": ["Numeric1", "Numeric2", "String1", "String2"],
"Type": ["Numeric", "Numeric", "String", "String"],
}
adata_strings = AnnData(
X=X_strings,
obs=pd.DataFrame(data=obs_data),
var=pd.DataFrame(data=var_strings, index=var_strings["Feature"]),
)
adata_strings.var[FEATURE_TYPE_KEY] = [NUMERIC_TAG, NUMERIC_TAG, CATEGORICAL_TAG, CATEGORICAL_TAG]
adata_encoded = ep.pp.encode(adata_strings.copy(), autodetect=True, encodings="label")
return adata_strings, adata_encoded
@pytest.fixture
def adata_encoded(adata_strings):
return ep.pp.encode(adata_strings.copy(), autodetect=True, encodings="label")
def test_assert_encoded(adata_strings_encoded):
adata_strings, adata_encoded = adata_strings_encoded
_assert_encoded(adata_encoded)
with pytest.raises(NotEncodedError, match=r"not yet been encoded"):
_assert_encoded(adata_strings)
def test_get_numeric_vars(adata_strings_encoded):
adata_strings, adata_encoded = adata_strings_encoded
vars = get_numeric_vars(adata_encoded)
assert vars == ["Numeric1", "Numeric2"]
with pytest.raises(NotEncodedError, match=r"not yet been encoded"):
get_numeric_vars(adata_strings)
def test_get_numeric_vars_numeric_only():
adata = AnnData(X=np.array([[1, 2, 3], [4, 0, 6]], dtype=np.float32))
vars = get_numeric_vars(adata)
assert vars == ["0", "1", "2"]
def test_assert_numeric_vars(adata_strings_encoded):
adata_strings, adata_encoded = adata_strings_encoded
assert_numeric_vars(adata_encoded, ["Numeric1", "Numeric2"])
with pytest.raises(ValueError, match=r"Some selected vars are not numeric"):
assert_numeric_vars(adata_encoded, ["Numeric2", "String1"])
def test_set_numeric_vars(adata_strings_encoded):
"""Test for the numeric vars setter."""
adata_strings, adata_encoded = adata_strings_encoded
values = np.array(
[[1.2, 2.2], [3.2, 4.2], [5.2, 6.2]],
dtype=np.dtype(np.float32),
)
adata_set = set_numeric_vars(adata_encoded, values, copy=True)
np.testing.assert_array_equal(adata_set.X[:, 2], values[:, 0]) and np.testing.assert_array_equal(
adata_set.X[:, 3], values[:, 1]
)
with pytest.raises(ValueError, match=r"Some selected vars are not numeric"):
set_numeric_vars(adata_encoded, values, vars=["ehrapycat_String1"])
string_values = np.array(
[
["A"],
["B"],
["A"],
]
)
with pytest.raises(TypeError, match=r"Values must be numeric"):
set_numeric_vars(adata_encoded, string_values)
extra_values = np.array(
[
[1.2, 1.3, 1.4],
[2.2, 2.3, 2.4],
[2.2, 2.3, 2.4],
],
dtype=np.dtype(np.float32),
)
with pytest.raises(ValueError, match=r"does not match number of vars"):
set_numeric_vars(adata_encoded, extra_values)
with pytest.raises(NotEncodedError, match=r"not yet been encoded"):
set_numeric_vars(adata_strings, values)
def test_are_ndarrays_equal(impute_num_adata):
impute_num_adata_copy = impute_num_adata.copy()
assert _are_ndarrays_equal(impute_num_adata.X, impute_num_adata_copy.X)
impute_num_adata_copy.X[0, 0] = 42.0
assert not _are_ndarrays_equal(impute_num_adata.X, impute_num_adata_copy.X)
def test_is_val_missing(impute_num_adata):
assert np.array_equal(
_is_val_missing(impute_num_adata.X),
np.array([[False, False, True], [False, False, False], [True, False, False], [False, False, True]]),
)