|
a |
|
b/ehrapy/tools/_sa.py |
|
|
1 |
from __future__ import annotations |
|
|
2 |
|
|
|
3 |
import warnings |
|
|
4 |
from typing import TYPE_CHECKING, Literal |
|
|
5 |
|
|
|
6 |
import numpy as np # noqa: TC002 |
|
|
7 |
import pandas as pd |
|
|
8 |
import statsmodels.api as sm |
|
|
9 |
import statsmodels.formula.api as smf |
|
|
10 |
from lifelines import ( |
|
|
11 |
CoxPHFitter, |
|
|
12 |
KaplanMeierFitter, |
|
|
13 |
LogLogisticAFTFitter, |
|
|
14 |
NelsonAalenFitter, |
|
|
15 |
WeibullAFTFitter, |
|
|
16 |
WeibullFitter, |
|
|
17 |
) |
|
|
18 |
from lifelines.statistics import StatisticalResult, logrank_test |
|
|
19 |
from scipy import stats |
|
|
20 |
|
|
|
21 |
from ehrapy.anndata import anndata_to_df |
|
|
22 |
from ehrapy.anndata._constants import CATEGORICAL_TAG, FEATURE_TYPE_KEY, NUMERIC_TAG |
|
|
23 |
|
|
|
24 |
if TYPE_CHECKING: |
|
|
25 |
from collections.abc import Iterable |
|
|
26 |
|
|
|
27 |
from anndata import AnnData |
|
|
28 |
from statsmodels.genmod.generalized_linear_model import GLMResultsWrapper |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
def ols( |
|
|
32 |
adata: AnnData, |
|
|
33 |
var_names: list[str] | None | None = None, |
|
|
34 |
formula: str | None = None, |
|
|
35 |
missing: Literal["none", "drop", "raise"] | None = "none", |
|
|
36 |
use_feature_types: bool = False, |
|
|
37 |
) -> sm.OLS: |
|
|
38 |
"""Create an Ordinary Least Squares (OLS) Model from a formula and AnnData. |
|
|
39 |
|
|
|
40 |
See https://www.statsmodels.org/stable/generated/statsmodels.formula.api.ols.html#statsmodels.formula.api.ols |
|
|
41 |
|
|
|
42 |
Args: |
|
|
43 |
adata: The AnnData object for the OLS model. |
|
|
44 |
var_names: A list of var names indicating which columns are for the OLS model. |
|
|
45 |
formula: The formula specifying the model. |
|
|
46 |
use_feature_types: If True, the feature types in the AnnData objects .var are used. |
|
|
47 |
missing: Available options are 'none', 'drop', and 'raise'. |
|
|
48 |
If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. |
|
|
49 |
If 'raise', an error is raised. |
|
|
50 |
|
|
|
51 |
Returns: |
|
|
52 |
The OLS model instance. |
|
|
53 |
|
|
|
54 |
Examples: |
|
|
55 |
>>> import ehrapy as ep |
|
|
56 |
>>> adata = ep.dt.mimic_2(encoded=False) |
|
|
57 |
>>> formula = "tco2_first ~ pco2_first" |
|
|
58 |
>>> var_names = ["tco2_first", "pco2_first"] |
|
|
59 |
>>> ols = ep.tl.ols(adata, var_names, formula, missing="drop") |
|
|
60 |
""" |
|
|
61 |
if isinstance(var_names, list): |
|
|
62 |
data = pd.DataFrame(adata[:, var_names].X, columns=var_names) |
|
|
63 |
else: |
|
|
64 |
data = pd.DataFrame(adata.X, columns=adata.var_names) |
|
|
65 |
|
|
|
66 |
if use_feature_types: |
|
|
67 |
for col in data.columns: |
|
|
68 |
if col in adata.var.index: |
|
|
69 |
feature_type = adata.var[FEATURE_TYPE_KEY][col] |
|
|
70 |
if feature_type == CATEGORICAL_TAG: |
|
|
71 |
data[col] = data[col].astype("category") |
|
|
72 |
elif feature_type == NUMERIC_TAG: |
|
|
73 |
data[col] = data[col].astype(float) |
|
|
74 |
else: |
|
|
75 |
data = data.astype(float) |
|
|
76 |
|
|
|
77 |
ols = smf.ols(formula, data=data, missing=missing) |
|
|
78 |
|
|
|
79 |
return ols |
|
|
80 |
|
|
|
81 |
|
|
|
82 |
def glm( |
|
|
83 |
adata: AnnData, |
|
|
84 |
var_names: Iterable[str] | None = None, |
|
|
85 |
formula: str | None = None, |
|
|
86 |
family: Literal["Gaussian", "Binomial", "Gamma", "Gaussian", "InverseGaussian"] = "Gaussian", |
|
|
87 |
use_feature_types: bool = False, |
|
|
88 |
missing: Literal["none", "drop", "raise"] = "none", |
|
|
89 |
as_continuous: Iterable[str] | None | None = None, |
|
|
90 |
) -> sm.GLM: |
|
|
91 |
"""Create a Generalized Linear Model (GLM) from a formula, a distribution, and AnnData. |
|
|
92 |
|
|
|
93 |
See https://www.statsmodels.org/stable/generated/statsmodels.formula.api.glm.html#statsmodels.formula.api.glm |
|
|
94 |
|
|
|
95 |
Args: |
|
|
96 |
adata: The AnnData object for the GLM model. |
|
|
97 |
var_names: A list of var names indicating which columns are for the GLM model. |
|
|
98 |
formula: The formula specifying the model. |
|
|
99 |
family: The distribution families. Available options are 'Gaussian', 'Binomial', 'Gamma', and 'InverseGaussian'. |
|
|
100 |
use_feature_types: If True, the feature types in the AnnData objects .var are used. |
|
|
101 |
missing: Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done. |
|
|
102 |
If 'drop', any observations with nans are dropped. If 'raise', an error is raised. |
|
|
103 |
as_continuous: A list of var names indicating which columns are continuous rather than categorical. |
|
|
104 |
The corresponding columns will be set as type float. |
|
|
105 |
|
|
|
106 |
Returns: |
|
|
107 |
The GLM model instance. |
|
|
108 |
|
|
|
109 |
Examples: |
|
|
110 |
>>> import ehrapy as ep |
|
|
111 |
>>> adata = ep.dt.mimic_2(encoded=False) |
|
|
112 |
>>> formula = "day_28_flg ~ age" |
|
|
113 |
>>> var_names = ["day_28_flg", "age"] |
|
|
114 |
>>> family = "Binomial" |
|
|
115 |
>>> glm = ep.tl.glm(adata, var_names, formula, family, missing="drop", as_continuous=["age"]) |
|
|
116 |
""" |
|
|
117 |
family_dict = { |
|
|
118 |
"Gaussian": sm.families.Gaussian(), |
|
|
119 |
"Binomial": sm.families.Binomial(), |
|
|
120 |
"Gamma": sm.families.Gamma(), |
|
|
121 |
"InverseGaussian": sm.families.InverseGaussian(), |
|
|
122 |
} |
|
|
123 |
if family in ["Gaussian", "Binomial", "Gamma", "Gaussian", "InverseGaussian"]: |
|
|
124 |
family = family_dict[family] |
|
|
125 |
if isinstance(var_names, list): |
|
|
126 |
data = pd.DataFrame(adata[:, var_names].X, columns=var_names) |
|
|
127 |
else: |
|
|
128 |
data = pd.DataFrame(adata.X, columns=adata.var_names) |
|
|
129 |
if as_continuous is not None: |
|
|
130 |
data[as_continuous] = data[as_continuous].astype(float) |
|
|
131 |
if use_feature_types: |
|
|
132 |
for col in data.columns: |
|
|
133 |
if col in adata.var.index: |
|
|
134 |
feature_type = adata.var[FEATURE_TYPE_KEY][col] |
|
|
135 |
if feature_type == CATEGORICAL_TAG: |
|
|
136 |
data[col] = data[col].astype("category") |
|
|
137 |
elif feature_type == NUMERIC_TAG: |
|
|
138 |
data[col] = data[col].astype(float) |
|
|
139 |
|
|
|
140 |
glm = smf.glm(formula, data=data, family=family, missing=missing) |
|
|
141 |
|
|
|
142 |
return glm |
|
|
143 |
|
|
|
144 |
|
|
|
145 |
def kmf( |
|
|
146 |
durations: Iterable, |
|
|
147 |
event_observed: Iterable | None = None, |
|
|
148 |
timeline: Iterable = None, |
|
|
149 |
entry: Iterable | None = None, |
|
|
150 |
label: str | None = None, |
|
|
151 |
alpha: float | None = None, |
|
|
152 |
ci_labels: tuple[str, str] = None, |
|
|
153 |
weights: Iterable | None = None, |
|
|
154 |
censoring: Literal["right", "left"] = None, |
|
|
155 |
) -> KaplanMeierFitter: |
|
|
156 |
"""DEPRECATION WARNING: This function is deprecated and will be removed in the next release. Use `kaplan_meier` instead. |
|
|
157 |
|
|
|
158 |
Fit the Kaplan-Meier estimate for the survival function. |
|
|
159 |
|
|
|
160 |
The Kaplan–Meier estimator, also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. |
|
|
161 |
In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment. |
|
|
162 |
|
|
|
163 |
See https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator |
|
|
164 |
https://lifelines.readthedocs.io/en/latest/fitters/univariate/KaplanMeierFitter.html#module-lifelines.fitters.kaplan_meier_fitter |
|
|
165 |
|
|
|
166 |
Args: |
|
|
167 |
durations: length n -- duration (relative to subject's birth) the subject was alive for. |
|
|
168 |
event_observed: True if the death was observed, False if the event was lost (right-censored). Defaults to all True if event_observed is equal to `None`. |
|
|
169 |
timeline: return the best estimate at the values in timelines (positively increasing) |
|
|
170 |
entry: Relative time when a subject entered the study. This is useful for left-truncated (not left-censored) observations. |
|
|
171 |
If None, all members of the population entered study when they were "born". |
|
|
172 |
label: A string to name the column of the estimate. |
|
|
173 |
alpha: The alpha value in the confidence intervals. Overrides the initializing alpha for this call to fit only. |
|
|
174 |
ci_labels: Add custom column names to the generated confidence intervals as a length-2 list: [<lower-bound name>, <upper-bound name>] (default: <label>_lower_<1-alpha/2>). |
|
|
175 |
weights: If providing a weighted dataset. For example, instead of providing every subject |
|
|
176 |
as a single element of `durations` and `event_observed`, one could weigh subject differently. |
|
|
177 |
censoring: 'right' for fitting the model to a right-censored dataset. |
|
|
178 |
'left' for fitting the model to a left-censored dataset (default: fit the model to a right-censored dataset). |
|
|
179 |
|
|
|
180 |
Returns: |
|
|
181 |
Fitted KaplanMeierFitter. |
|
|
182 |
|
|
|
183 |
Examples: |
|
|
184 |
>>> import ehrapy as ep |
|
|
185 |
>>> adata = ep.dt.mimic_2(encoded=False) |
|
|
186 |
>>> # Flip 'censor_fl' because 0 = death and 1 = censored |
|
|
187 |
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0) |
|
|
188 |
>>> kmf = ep.tl.kmf(adata[:, ["mort_day_censored"]].X, adata[:, ["censor_flg"]].X) |
|
|
189 |
""" |
|
|
190 |
warnings.warn( |
|
|
191 |
"This function is deprecated and will be removed in the next release. Use `ep.tl.kaplan_meier` instead.", |
|
|
192 |
DeprecationWarning, |
|
|
193 |
stacklevel=2, |
|
|
194 |
) |
|
|
195 |
kmf = KaplanMeierFitter() |
|
|
196 |
if censoring == "None" or "right": |
|
|
197 |
kmf.fit( |
|
|
198 |
durations=durations, |
|
|
199 |
event_observed=event_observed, |
|
|
200 |
timeline=timeline, |
|
|
201 |
entry=entry, |
|
|
202 |
label=label, |
|
|
203 |
alpha=alpha, |
|
|
204 |
ci_labels=ci_labels, |
|
|
205 |
weights=weights, |
|
|
206 |
) |
|
|
207 |
elif censoring == "left": |
|
|
208 |
kmf.fit_left_censoring( |
|
|
209 |
durations=durations, |
|
|
210 |
event_observed=event_observed, |
|
|
211 |
timeline=timeline, |
|
|
212 |
entry=entry, |
|
|
213 |
label=label, |
|
|
214 |
alpha=alpha, |
|
|
215 |
ci_labels=ci_labels, |
|
|
216 |
weights=weights, |
|
|
217 |
) |
|
|
218 |
|
|
|
219 |
return kmf |
|
|
220 |
|
|
|
221 |
|
|
|
222 |
def kaplan_meier( |
|
|
223 |
adata: AnnData, |
|
|
224 |
duration_col: str, |
|
|
225 |
event_col: str | None = None, |
|
|
226 |
*, |
|
|
227 |
uns_key: str = "kaplan_meier", |
|
|
228 |
timeline: list[float] | None = None, |
|
|
229 |
entry: str | None = None, |
|
|
230 |
label: str | None = None, |
|
|
231 |
alpha: float | None = None, |
|
|
232 |
ci_labels: list[str] | None = None, |
|
|
233 |
weights: list[float] | None = None, |
|
|
234 |
fit_options: dict | None = None, |
|
|
235 |
censoring: Literal["right", "left"] = "right", |
|
|
236 |
) -> KaplanMeierFitter: |
|
|
237 |
"""Fit the Kaplan-Meier estimate for the survival function. |
|
|
238 |
|
|
|
239 |
The Kaplan–Meier estimator, also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. |
|
|
240 |
In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment. |
|
|
241 |
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'kaplan_meier' unless specified otherwise in the `uns_key` parameter. |
|
|
242 |
|
|
|
243 |
See https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator |
|
|
244 |
https://lifelines.readthedocs.io/en/latest/fitters/univariate/KaplanMeierFitter.html#module-lifelines.fitters.kaplan_meier_fitter |
|
|
245 |
|
|
|
246 |
Args: |
|
|
247 |
adata: AnnData object. |
|
|
248 |
duration_col: The name of the column in the AnnData object that contains the subjects’ lifetimes. |
|
|
249 |
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored. |
|
|
250 |
Column values are `True` if the event was observed, `False` if the event was lost (right-censored). |
|
|
251 |
If left `None`, all individuals are assumed to be uncensored. |
|
|
252 |
uns_key: The key to use for the `.uns` slot in the AnnData object. |
|
|
253 |
timeline: Return the best estimate at the values in timelines (positively increasing) |
|
|
254 |
entry: Relative time when a subject entered the study. This is useful for left-truncated (not left-censored) observations. |
|
|
255 |
If None, all members of the population entered study when they were "born". |
|
|
256 |
label: A string to name the column of the estimate. |
|
|
257 |
alpha: The alpha value in the confidence intervals. Overrides the initializing alpha for this call to fit only. |
|
|
258 |
ci_labels: Add custom column names to the generated confidence intervals as a length-2 list: [<lower-bound name>, <upper-bound name>] (default: <label>_lower_<1-alpha/2>). |
|
|
259 |
weights: If providing a weighted dataset. For example, instead of providing every subject |
|
|
260 |
as a single element of `durations` and `event_observed`, one could weigh subject differently. |
|
|
261 |
fit_options: Additional keyword arguments to pass into the estimator. |
|
|
262 |
censoring: 'right' for fitting the model to a right-censored dataset. (default, calls fit). |
|
|
263 |
'left' for fitting the model to a left-censored dataset (calls fit_left_censoring). |
|
|
264 |
|
|
|
265 |
Returns: |
|
|
266 |
Fitted KaplanMeierFitter. |
|
|
267 |
|
|
|
268 |
Examples: |
|
|
269 |
>>> import ehrapy as ep |
|
|
270 |
>>> adata = ep.dt.mimic_2(encoded=False) |
|
|
271 |
>>> # Flip 'censor_fl' because 0 = death and 1 = censored |
|
|
272 |
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0) |
|
|
273 |
>>> kmf = ep.tl.kaplan_meier(adata, "mort_day_censored", "censor_flg", label="Mortality") |
|
|
274 |
""" |
|
|
275 |
return _univariate_model( |
|
|
276 |
adata, |
|
|
277 |
duration_col, |
|
|
278 |
event_col, |
|
|
279 |
KaplanMeierFitter, |
|
|
280 |
uns_key, |
|
|
281 |
True, |
|
|
282 |
timeline, |
|
|
283 |
entry, |
|
|
284 |
label, |
|
|
285 |
alpha, |
|
|
286 |
ci_labels, |
|
|
287 |
weights, |
|
|
288 |
fit_options, |
|
|
289 |
censoring, |
|
|
290 |
) |
|
|
291 |
|
|
|
292 |
|
|
|
293 |
def test_kmf_logrank( |
|
|
294 |
kmf_A: KaplanMeierFitter, |
|
|
295 |
kmf_B: KaplanMeierFitter, |
|
|
296 |
t_0: float | None = -1, |
|
|
297 |
weightings: Literal["wilcoxon", "tarone-ware", "peto", "fleming-harrington"] | None = None, |
|
|
298 |
) -> StatisticalResult: |
|
|
299 |
"""Calculates the p-value for the logrank test comparing the survival functions of two groups. |
|
|
300 |
|
|
|
301 |
Measures and reports on whether two intensity processes are different. |
|
|
302 |
That is, given two event series, determines whether the data generating processes are statistically different. |
|
|
303 |
The test-statistic is chi-squared under the null hypothesis. |
|
|
304 |
|
|
|
305 |
See https://lifelines.readthedocs.io/en/latest/lifelines.statistics.html |
|
|
306 |
|
|
|
307 |
Args: |
|
|
308 |
kmf_A: The first KaplanMeierFitter object containing the durations and events. |
|
|
309 |
kmf_B: The second KaplanMeierFitter object containing the durations and events. |
|
|
310 |
t_0: The final time period under observation, and subjects who experience the event after this time are set to be censored. |
|
|
311 |
Specify -1 to use all time. |
|
|
312 |
weightings: Apply a weighted logrank test: options are "wilcoxon" for Wilcoxon (also known as Breslow), "tarone-ware" |
|
|
313 |
for Tarone-Ware, "peto" for Peto test and "fleming-harrington" for Fleming-Harrington test. |
|
|
314 |
These are useful for testing for early or late differences in the survival curve. For the Fleming-Harrington |
|
|
315 |
test, keyword arguments p and q must also be provided with non-negative values. |
|
|
316 |
|
|
|
317 |
Returns: |
|
|
318 |
The p-value for the logrank test comparing the survival functions of the two groups. |
|
|
319 |
""" |
|
|
320 |
results_pairwise = logrank_test( |
|
|
321 |
durations_A=kmf_A.durations, |
|
|
322 |
durations_B=kmf_B.durations, |
|
|
323 |
event_observed_A=kmf_A.event_observed, |
|
|
324 |
event_observed_B=kmf_B.event_observed, |
|
|
325 |
weights_A=kmf_A.weights, |
|
|
326 |
weights_B=kmf_B.weights, |
|
|
327 |
t_0=t_0, |
|
|
328 |
weightings=weightings, |
|
|
329 |
) |
|
|
330 |
|
|
|
331 |
return results_pairwise |
|
|
332 |
|
|
|
333 |
|
|
|
334 |
def test_nested_f_statistic(small_model: GLMResultsWrapper, big_model: GLMResultsWrapper) -> float: |
|
|
335 |
"""Calculate the P value indicating if a larger GLM, encompassing a smaller GLM's parameters, adds explanatory power. |
|
|
336 |
|
|
|
337 |
See https://stackoverflow.com/questions/27328623/anova-test-for-glm-in-python/60769343#60769343 |
|
|
338 |
|
|
|
339 |
Args: |
|
|
340 |
small_model: fitted generalized linear models. |
|
|
341 |
big_model: fitted generalized linear models. |
|
|
342 |
|
|
|
343 |
Returns: |
|
|
344 |
float: p_value of Anova test. |
|
|
345 |
""" |
|
|
346 |
addtl_params = big_model.df_model - small_model.df_model |
|
|
347 |
f_stat = (small_model.deviance - big_model.deviance) / (addtl_params * big_model.scale) |
|
|
348 |
df_numerator = addtl_params |
|
|
349 |
df_denom = big_model.fittedvalues.shape[0] - big_model.df_model |
|
|
350 |
p_value = stats.f.sf(f_stat, df_numerator, df_denom) |
|
|
351 |
|
|
|
352 |
return p_value |
|
|
353 |
|
|
|
354 |
|
|
|
355 |
def anova_glm(result_1: GLMResultsWrapper, result_2: GLMResultsWrapper, formula_1: str, formula_2: str) -> pd.DataFrame: |
|
|
356 |
"""Anova table for two fitted generalized linear models. |
|
|
357 |
|
|
|
358 |
Args: |
|
|
359 |
result_1: fitted generalized linear models. |
|
|
360 |
result_2: fitted generalized linear models. |
|
|
361 |
formula_1: The formula specifying the model. |
|
|
362 |
formula_2: The formula specifying the model. |
|
|
363 |
|
|
|
364 |
Returns: |
|
|
365 |
pd.DataFrame: Anova table. |
|
|
366 |
""" |
|
|
367 |
p_value = test_nested_f_statistic(result_1, result_2) |
|
|
368 |
|
|
|
369 |
table = { |
|
|
370 |
"Model": [1, 2], |
|
|
371 |
"formula": [formula_1, formula_2], |
|
|
372 |
"Df Resid.": [result_1.df_resid, result_2.df_resid], |
|
|
373 |
"Dev.": [result_1.deviance, result_2.deviance], |
|
|
374 |
"Df_diff": [None, result_2.df_model - result_1.df_model], |
|
|
375 |
"Pr(>Chi)": [None, p_value], |
|
|
376 |
} |
|
|
377 |
dataframe = pd.DataFrame(data=table) |
|
|
378 |
return dataframe |
|
|
379 |
|
|
|
380 |
|
|
|
381 |
def _build_model_input_dataframe(adata: AnnData, duration_col: str, accept_zero_duration=True): |
|
|
382 |
"""Convenience function for regression models.""" |
|
|
383 |
df = anndata_to_df(adata) |
|
|
384 |
df = df.dropna() |
|
|
385 |
|
|
|
386 |
if not accept_zero_duration: |
|
|
387 |
df.loc[df[duration_col] == 0, duration_col] += 1e-5 |
|
|
388 |
|
|
|
389 |
return df |
|
|
390 |
|
|
|
391 |
|
|
|
392 |
def cox_ph( |
|
|
393 |
adata: AnnData, |
|
|
394 |
duration_col: str, |
|
|
395 |
event_col: str = None, |
|
|
396 |
*, |
|
|
397 |
uns_key: str = "cox_ph", |
|
|
398 |
alpha: float = 0.05, |
|
|
399 |
label: str | None = None, |
|
|
400 |
baseline_estimation_method: Literal["breslow", "spline", "piecewise"] = "breslow", |
|
|
401 |
penalizer: float | np.ndarray = 0.0, |
|
|
402 |
l1_ratio: float = 0.0, |
|
|
403 |
strata: list[str] | str | None = None, |
|
|
404 |
n_baseline_knots: int = 4, |
|
|
405 |
knots: list[float] | None = None, |
|
|
406 |
breakpoints: list[float] | None = None, |
|
|
407 |
weights_col: str | None = None, |
|
|
408 |
cluster_col: str | None = None, |
|
|
409 |
entry_col: str = None, |
|
|
410 |
robust: bool = False, |
|
|
411 |
formula: str = None, |
|
|
412 |
batch_mode: bool = None, |
|
|
413 |
show_progress: bool = False, |
|
|
414 |
initial_point: np.ndarray | None = None, |
|
|
415 |
fit_options: dict | None = None, |
|
|
416 |
) -> CoxPHFitter: |
|
|
417 |
"""Fit the Cox’s proportional hazard for the survival function. |
|
|
418 |
|
|
|
419 |
The Cox proportional hazards model (CoxPH) examines the relationship between the survival time of subjects and one or more predictor variables. |
|
|
420 |
It models the hazard rate as a product of a baseline hazard function and an exponential function of the predictors, assuming proportional hazards over time. |
|
|
421 |
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'cox_ph' unless specified otherwise in the `uns_key` parameter. |
|
|
422 |
|
|
|
423 |
See https://lifelines.readthedocs.io/en/latest/fitters/regression/CoxPHFitter.html |
|
|
424 |
|
|
|
425 |
Args: |
|
|
426 |
adata: AnnData object. |
|
|
427 |
duration_col: The name of the column in the AnnData objects that contains the subjects’ lifetimes. |
|
|
428 |
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored. |
|
|
429 |
Column values are `True` if the event was observed, `False` if the event was lost (right-censored). |
|
|
430 |
If left `None`, all individuals are assumed to be uncensored. |
|
|
431 |
uns_key: The key to use for the `.uns` slot in the AnnData object. |
|
|
432 |
alpha: The alpha value in the confidence intervals. |
|
|
433 |
label: The name of the column of the estimate. |
|
|
434 |
baseline_estimation_method: The method used to estimate the baseline hazard. Options are 'breslow', 'spline', and 'piecewise'. |
|
|
435 |
penalizer: Attach a penalty to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates. |
|
|
436 |
l1_ratio: Specify what ratio to assign to a L1 vs L2 penalty. Same as scikit-learn. See penalizer above. |
|
|
437 |
strata: specify a list of columns to use in stratification. This is useful if a categorical covariate does not obey the proportional hazard assumption. This is used similar to the strata expression in R. See http://courses.washington.edu/b515/l17.pdf. |
|
|
438 |
n_baseline_knots: Used when baseline_estimation_method="spline". Set the number of knots (interior & exterior) in the baseline hazard, which will be placed evenly along the time axis. Should be at least 2. Royston et. al, the authors of this model, suggest 4 to start, but any values between 2 and 8 are reasonable. If you need to customize the timestamps used to calculate the curve, use the knots parameter instead. |
|
|
439 |
knots: When baseline_estimation_method="spline", this allows customizing the points in the time axis for the baseline hazard curve. To use evenly-spaced points in time, the n_baseline_knots parameter can be employed instead. |
|
|
440 |
breakpoints: Used when baseline_estimation_method="piecewise". Set the positions of the baseline hazard breakpoints. |
|
|
441 |
weights_col: The name of the column in DataFrame that contains the weights for each subject. |
|
|
442 |
cluster_col: The name of the column in DataFrame that contains the cluster variable. Using this forces the sandwich estimator (robust variance estimator) to be used. |
|
|
443 |
entry_col: Column denoting when a subject entered the study, i.e. left-truncation. |
|
|
444 |
robust: Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ. |
|
|
445 |
formula: an Wilkinson formula, like in R and statsmodels, for the right-hand-side. If left as None, all columns not assigned as durations, weights, etc. are used. Uses the library Formulaic for parsing. |
|
|
446 |
batch_mode: Enabling batch_mode can be faster for datasets with a large number of ties. If left as `None`, lifelines will choose the best option. |
|
|
447 |
show_progress: Since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing. |
|
|
448 |
initial_point: set the starting point for the iterative solver. |
|
|
449 |
fit_options: Additional keyword arguments to pass into the estimator. |
|
|
450 |
|
|
|
451 |
Returns: |
|
|
452 |
Fitted CoxPHFitter. |
|
|
453 |
|
|
|
454 |
Examples: |
|
|
455 |
>>> import ehrapy as ep |
|
|
456 |
>>> adata = ep.dt.mimic_2(encoded=False) |
|
|
457 |
>>> # Flip 'censor_fl' because 0 = death and 1 = censored |
|
|
458 |
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0) |
|
|
459 |
>>> cph = ep.tl.cox_ph(adata, "mort_day_censored", "censor_flg") |
|
|
460 |
""" |
|
|
461 |
df = _build_model_input_dataframe(adata, duration_col) |
|
|
462 |
cox_ph = CoxPHFitter( |
|
|
463 |
alpha=alpha, |
|
|
464 |
label=label, |
|
|
465 |
strata=strata, |
|
|
466 |
baseline_estimation_method=baseline_estimation_method, |
|
|
467 |
penalizer=penalizer, |
|
|
468 |
l1_ratio=l1_ratio, |
|
|
469 |
n_baseline_knots=n_baseline_knots, |
|
|
470 |
knots=knots, |
|
|
471 |
breakpoints=breakpoints, |
|
|
472 |
) |
|
|
473 |
cox_ph.fit( |
|
|
474 |
df, |
|
|
475 |
duration_col=duration_col, |
|
|
476 |
event_col=event_col, |
|
|
477 |
entry_col=entry_col, |
|
|
478 |
robust=robust, |
|
|
479 |
initial_point=initial_point, |
|
|
480 |
weights_col=weights_col, |
|
|
481 |
cluster_col=cluster_col, |
|
|
482 |
batch_mode=batch_mode, |
|
|
483 |
formula=formula, |
|
|
484 |
fit_options=fit_options, |
|
|
485 |
show_progress=show_progress, |
|
|
486 |
) |
|
|
487 |
|
|
|
488 |
summary = cox_ph.summary |
|
|
489 |
adata.uns[uns_key] = summary |
|
|
490 |
|
|
|
491 |
return cox_ph |
|
|
492 |
|
|
|
493 |
|
|
|
494 |
def weibull_aft( |
|
|
495 |
adata: AnnData, |
|
|
496 |
duration_col: str, |
|
|
497 |
event_col: str, |
|
|
498 |
*, |
|
|
499 |
uns_key: str = "weibull_aft", |
|
|
500 |
alpha: float = 0.05, |
|
|
501 |
fit_intercept: bool = True, |
|
|
502 |
penalizer: float | np.ndarray = 0.0, |
|
|
503 |
l1_ratio: float = 0.0, |
|
|
504 |
model_ancillary: bool = True, |
|
|
505 |
ancillary: bool | pd.DataFrame | str | None = None, |
|
|
506 |
show_progress: bool = False, |
|
|
507 |
weights_col: str | None = None, |
|
|
508 |
robust: bool = False, |
|
|
509 |
initial_point=None, |
|
|
510 |
entry_col: str | None = None, |
|
|
511 |
formula: str | None = None, |
|
|
512 |
fit_options: dict | None = None, |
|
|
513 |
) -> WeibullAFTFitter: |
|
|
514 |
"""Fit the Weibull accelerated failure time regression for the survival function. |
|
|
515 |
|
|
|
516 |
The Weibull Accelerated Failure Time (AFT) survival regression model is a statistical method used to analyze time-to-event data, |
|
|
517 |
where the underlying assumption is that the logarithm of survival time follows a Weibull distribution. |
|
|
518 |
It models the survival time as an exponential function of the predictors, assuming a specific shape parameter |
|
|
519 |
for the distribution and allowing for accelerated or decelerated failure times based on the covariates. |
|
|
520 |
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'weibull_aft' unless specified otherwise in the `uns_key` parameter. |
|
|
521 |
|
|
|
522 |
See https://lifelines.readthedocs.io/en/latest/fitters/regression/WeibullAFTFitter.html |
|
|
523 |
|
|
|
524 |
Args: |
|
|
525 |
adata: AnnData object. |
|
|
526 |
duration_col: Name of the column in the AnnData objects that contains the subjects’ lifetimes. |
|
|
527 |
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored. |
|
|
528 |
Column values are `True` if the event was observed, `False` if the event was lost (right-censored). |
|
|
529 |
If left `None`, all individuals are assumed to be uncensored. |
|
|
530 |
uns_key: The key to use for the `.uns` slot in the AnnData object. |
|
|
531 |
alpha: The alpha value in the confidence intervals. |
|
|
532 |
fit_intercept: Whether to fit an intercept term in the model. |
|
|
533 |
penalizer: Attach a penalty to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates. |
|
|
534 |
l1_ratio: Specify what ratio to assign to a L1 vs L2 penalty. Same as scikit-learn. See penalizer above. |
|
|
535 |
model_ancillary: set the model instance to always model the ancillary parameter with the supplied Dataframe. This is useful for grid-search optimization. |
|
|
536 |
ancillary: Choose to model the ancillary parameters. |
|
|
537 |
If None or False, explicitly do not fit the ancillary parameters using any covariates. |
|
|
538 |
If True, model the ancillary parameters with the same covariates as ``df``. |
|
|
539 |
If DataFrame, provide covariates to model the ancillary parameters. Must be the same row count as ``df``. |
|
|
540 |
If str, should be a formula |
|
|
541 |
show_progress: since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing. |
|
|
542 |
weights_col: The name of the column in DataFrame that contains the weights for each subject. |
|
|
543 |
robust: Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ. |
|
|
544 |
initial_point: set the starting point for the iterative solver. |
|
|
545 |
entry_col: Column denoting when a subject entered the study, i.e. left-truncation. |
|
|
546 |
formula: Use an R-style formula for modeling the dataset. See formula syntax: https://matthewwardrop.github.io/formulaic/basic/grammar/ |
|
|
547 |
If a formula is not provided, all variables in the dataframe are used (minus those used for other purposes like event_col, etc.) |
|
|
548 |
fit_options: Additional keyword arguments to pass into the estimator. |
|
|
549 |
|
|
|
550 |
|
|
|
551 |
Returns: |
|
|
552 |
Fitted WeibullAFTFitter. |
|
|
553 |
|
|
|
554 |
Examples: |
|
|
555 |
>>> import ehrapy as ep |
|
|
556 |
>>> adata = ep.dt.mimic_2(encoded=False) |
|
|
557 |
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0) |
|
|
558 |
>>> adata = adata[:, ["mort_day_censored", "censor_flg"]] |
|
|
559 |
>>> aft = ep.tl.weibull_aft(adata, duration_col="mort_day_censored", event_col="censor_flg") |
|
|
560 |
>>> aft.print_summary() |
|
|
561 |
""" |
|
|
562 |
df = _build_model_input_dataframe(adata, duration_col, accept_zero_duration=False) |
|
|
563 |
|
|
|
564 |
weibull_aft = WeibullAFTFitter( |
|
|
565 |
alpha=alpha, |
|
|
566 |
fit_intercept=fit_intercept, |
|
|
567 |
penalizer=penalizer, |
|
|
568 |
l1_ratio=l1_ratio, |
|
|
569 |
model_ancillary=model_ancillary, |
|
|
570 |
) |
|
|
571 |
|
|
|
572 |
weibull_aft.fit( |
|
|
573 |
df, |
|
|
574 |
duration_col=duration_col, |
|
|
575 |
event_col=event_col, |
|
|
576 |
entry_col=entry_col, |
|
|
577 |
ancillary=ancillary, |
|
|
578 |
show_progress=show_progress, |
|
|
579 |
weights_col=weights_col, |
|
|
580 |
robust=robust, |
|
|
581 |
initial_point=initial_point, |
|
|
582 |
formula=formula, |
|
|
583 |
fit_options=fit_options, |
|
|
584 |
) |
|
|
585 |
|
|
|
586 |
summary = weibull_aft.summary |
|
|
587 |
adata.uns[uns_key] = summary |
|
|
588 |
|
|
|
589 |
return weibull_aft |
|
|
590 |
|
|
|
591 |
|
|
|
592 |
def log_logistic_aft( |
|
|
593 |
adata: AnnData, |
|
|
594 |
duration_col: str, |
|
|
595 |
event_col: str | None = None, |
|
|
596 |
*, |
|
|
597 |
uns_key: str = "log_logistic_aft", |
|
|
598 |
alpha: float = 0.05, |
|
|
599 |
fit_intercept: bool = True, |
|
|
600 |
penalizer: float | np.ndarray = 0.0, |
|
|
601 |
l1_ratio: float = 0.0, |
|
|
602 |
model_ancillary: bool = False, |
|
|
603 |
ancillary: bool | pd.DataFrame | str | None = None, |
|
|
604 |
show_progress: bool = False, |
|
|
605 |
weights_col: str | None = None, |
|
|
606 |
robust: bool = False, |
|
|
607 |
initial_point=None, |
|
|
608 |
entry_col: str | None = None, |
|
|
609 |
formula: str | None = None, |
|
|
610 |
fit_options: dict | None = None, |
|
|
611 |
) -> LogLogisticAFTFitter: |
|
|
612 |
"""Fit the log logistic accelerated failure time regression for the survival function. |
|
|
613 |
|
|
|
614 |
The Log-Logistic Accelerated Failure Time (AFT) survival regression model is a powerful statistical tool employed in the analysis of time-to-event data. |
|
|
615 |
This model operates under the assumption that the logarithm of survival time adheres to a log-logistic distribution, offering a flexible framework for understanding the impact of covariates on survival times. |
|
|
616 |
By modeling survival time as a function of predictors, the Log-Logistic AFT model enables researchers to explore |
|
|
617 |
how specific factors influence the acceleration or deceleration of failure times, providing valuable insights into the underlying mechanisms driving event occurrence. |
|
|
618 |
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'log_logistic_aft' unless specified otherwise in the `uns_key` parameter. |
|
|
619 |
|
|
|
620 |
See https://lifelines.readthedocs.io/en/latest/fitters/regression/LogLogisticAFTFitter.html |
|
|
621 |
|
|
|
622 |
Args: |
|
|
623 |
adata: AnnData object. |
|
|
624 |
duration_col: Name of the column in the AnnData objects that contains the subjects’ lifetimes. |
|
|
625 |
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored. |
|
|
626 |
Column values are `True` if the event was observed, `False` if the event was lost (right-censored). |
|
|
627 |
If left `None`, all individuals are assumed to be uncensored. |
|
|
628 |
uns_key: The key to use for the `.uns` slot in the AnnData object. |
|
|
629 |
alpha: The alpha value in the confidence intervals. |
|
|
630 |
fit_intercept: Whether to fit an intercept term in the model. |
|
|
631 |
penalizer: Attach a penalty to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates. |
|
|
632 |
l1_ratio: Specify what ratio to assign to a L1 vs L2 penalty. Same as scikit-learn. See penalizer above. |
|
|
633 |
model_ancillary: Set the model instance to always model the ancillary parameter with the supplied Dataframe. This is useful for grid-search optimization. |
|
|
634 |
ancillary: Choose to model the ancillary parameters. |
|
|
635 |
If None or False, explicitly do not fit the ancillary parameters using any covariates. |
|
|
636 |
If True, model the ancillary parameters with the same covariates as ``df``. |
|
|
637 |
If DataFrame, provide covariates to model the ancillary parameters. Must be the same row count as ``df``. |
|
|
638 |
If str, should be a formula |
|
|
639 |
show_progress: Since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing. |
|
|
640 |
weights_col: The name of the column in DataFrame that contains the weights for each subject. |
|
|
641 |
robust: Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ. |
|
|
642 |
initial_point: set the starting point for the iterative solver. |
|
|
643 |
entry_col: Column denoting when a subject entered the study, i.e. left-truncation. |
|
|
644 |
formula: Use an R-style formula for modeling the dataset. See formula syntax: https://matthewwardrop.github.io/formulaic/basic/grammar/ |
|
|
645 |
If a formula is not provided, all variables in the dataframe are used (minus those used for other purposes like event_col, etc.) |
|
|
646 |
fit_options: Additional keyword arguments to pass into the estimator. |
|
|
647 |
|
|
|
648 |
Returns: |
|
|
649 |
Fitted LogLogisticAFTFitter. |
|
|
650 |
|
|
|
651 |
Examples: |
|
|
652 |
>>> import ehrapy as ep |
|
|
653 |
>>> adata = ep.dt.mimic_2(encoded=False) |
|
|
654 |
>>> # Flip 'censor_fl' because 0 = death and 1 = censored |
|
|
655 |
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0) |
|
|
656 |
>>> adata = adata[:, ["mort_day_censored", "censor_flg"]] |
|
|
657 |
>>> llf = ep.tl.log_logistic_aft(adata, duration_col="mort_day_censored", event_col="censor_flg") |
|
|
658 |
""" |
|
|
659 |
df = _build_model_input_dataframe(adata, duration_col, accept_zero_duration=False) |
|
|
660 |
|
|
|
661 |
log_logistic_aft = LogLogisticAFTFitter( |
|
|
662 |
alpha=alpha, |
|
|
663 |
fit_intercept=fit_intercept, |
|
|
664 |
penalizer=penalizer, |
|
|
665 |
l1_ratio=l1_ratio, |
|
|
666 |
model_ancillary=model_ancillary, |
|
|
667 |
) |
|
|
668 |
|
|
|
669 |
log_logistic_aft.fit( |
|
|
670 |
df, |
|
|
671 |
duration_col=duration_col, |
|
|
672 |
event_col=event_col, |
|
|
673 |
entry_col=entry_col, |
|
|
674 |
ancillary=ancillary, |
|
|
675 |
show_progress=show_progress, |
|
|
676 |
weights_col=weights_col, |
|
|
677 |
robust=robust, |
|
|
678 |
initial_point=initial_point, |
|
|
679 |
formula=formula, |
|
|
680 |
fit_options=fit_options, |
|
|
681 |
) |
|
|
682 |
|
|
|
683 |
summary = log_logistic_aft.summary |
|
|
684 |
adata.uns[uns_key] = summary |
|
|
685 |
|
|
|
686 |
return log_logistic_aft |
|
|
687 |
|
|
|
688 |
|
|
|
689 |
def _univariate_model( |
|
|
690 |
adata: AnnData, |
|
|
691 |
duration_col: str, |
|
|
692 |
event_col: str, |
|
|
693 |
model_class, |
|
|
694 |
uns_key: str, |
|
|
695 |
accept_zero_duration=True, |
|
|
696 |
timeline: list[float] | None = None, |
|
|
697 |
entry: str | None = None, |
|
|
698 |
label: str | None = None, |
|
|
699 |
alpha: float | None = None, |
|
|
700 |
ci_labels: list[str] | None = None, |
|
|
701 |
weights: list[float] | None = None, |
|
|
702 |
fit_options: dict | None = None, |
|
|
703 |
censoring: Literal["right", "left"] = "right", |
|
|
704 |
): |
|
|
705 |
"""Convenience function for univariate models.""" |
|
|
706 |
df = _build_model_input_dataframe(adata, duration_col, accept_zero_duration) |
|
|
707 |
T = df[duration_col] |
|
|
708 |
E = df[event_col] |
|
|
709 |
|
|
|
710 |
model = model_class() |
|
|
711 |
function_name = "fit" if censoring == "right" else "fit_left_censoring" |
|
|
712 |
# get fit function, default to fit if not found |
|
|
713 |
fit_function = getattr(model, function_name, model.fit) |
|
|
714 |
|
|
|
715 |
fit_function( |
|
|
716 |
T, |
|
|
717 |
event_observed=E, |
|
|
718 |
timeline=timeline, |
|
|
719 |
entry=entry, |
|
|
720 |
label=label, |
|
|
721 |
alpha=alpha, |
|
|
722 |
ci_labels=ci_labels, |
|
|
723 |
weights=weights, |
|
|
724 |
fit_options=fit_options, |
|
|
725 |
) |
|
|
726 |
|
|
|
727 |
if isinstance(model, NelsonAalenFitter) or isinstance( |
|
|
728 |
model, KaplanMeierFitter |
|
|
729 |
): # NelsonAalenFitter and KaplanMeierFitter have no summary attribute |
|
|
730 |
summary = model.event_table |
|
|
731 |
else: |
|
|
732 |
summary = model.summary |
|
|
733 |
adata.uns[uns_key] = summary |
|
|
734 |
|
|
|
735 |
return model |
|
|
736 |
|
|
|
737 |
|
|
|
738 |
def nelson_aalen( |
|
|
739 |
adata: AnnData, |
|
|
740 |
duration_col: str, |
|
|
741 |
event_col: str | None = None, |
|
|
742 |
*, |
|
|
743 |
uns_key: str = "nelson_aalen", |
|
|
744 |
timeline: list[float] | None = None, |
|
|
745 |
entry: str | None = None, |
|
|
746 |
label: str | None = None, |
|
|
747 |
alpha: float | None = None, |
|
|
748 |
ci_labels: list[str] | None = None, |
|
|
749 |
weights: list[float] | None = None, |
|
|
750 |
fit_options: dict | None = None, |
|
|
751 |
censoring: Literal["right", "left"] = "right", |
|
|
752 |
) -> NelsonAalenFitter: |
|
|
753 |
"""Employ the Nelson-Aalen estimator to estimate the cumulative hazard function from censored survival data. |
|
|
754 |
|
|
|
755 |
The Nelson-Aalen estimator is a non-parametric method used in survival analysis to estimate the cumulative hazard function. |
|
|
756 |
This technique is particularly useful when dealing with censored data, as it accounts for the presence of individuals whose event times are unknown due to censoring. |
|
|
757 |
By estimating the cumulative hazard function, the Nelson-Aalen estimator allows researchers to assess the risk of an event occurring over time, providing valuable insights into the underlying dynamics of the survival process. |
|
|
758 |
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'nelson_aalen' unless specified otherwise in the `uns_key` parameter. |
|
|
759 |
See https://lifelines.readthedocs.io/en/latest/fitters/univariate/NelsonAalenFitter.html |
|
|
760 |
|
|
|
761 |
Args: |
|
|
762 |
adata: AnnData object. |
|
|
763 |
duration_col: The name of the column in the AnnData objects that contains the subjects’ lifetimes. |
|
|
764 |
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored. |
|
|
765 |
Column values are `True` if the event was observed, `False` if the event was lost (right-censored). |
|
|
766 |
If left `None`, all individuals are assumed to be uncensored. |
|
|
767 |
uns_key: The key to use for the `.uns` slot in the AnnData object. |
|
|
768 |
timeline: Return the best estimate at the values in timelines (positively increasing) |
|
|
769 |
entry: Relative time when a subject entered the study. This is useful for left-truncated (not left-censored) observations. |
|
|
770 |
If None, all members of the population entered study when they were "born". |
|
|
771 |
label: A string to name the column of the estimate. |
|
|
772 |
alpha: The alpha value in the confidence intervals. Overrides the initializing alpha for this call to fit only. |
|
|
773 |
ci_labels: Add custom column names to the generated confidence intervals as a length-2 list: [<lower-bound name>, <upper-bound name>] (default: <label>_lower_<1-alpha/2>). |
|
|
774 |
weights: If providing a weighted dataset. For example, instead of providing every subject |
|
|
775 |
as a single element of `durations` and `event_observed`, one could weigh subject differently. |
|
|
776 |
fit_options: Additional keyword arguments to pass into the estimator. |
|
|
777 |
censoring: 'right' for fitting the model to a right-censored dataset. (default, calls fit). |
|
|
778 |
'left' for fitting the model to a left-censored dataset (calls fit_left_censoring). |
|
|
779 |
|
|
|
780 |
Returns: |
|
|
781 |
Fitted NelsonAalenFitter. |
|
|
782 |
|
|
|
783 |
Examples: |
|
|
784 |
>>> import ehrapy as ep |
|
|
785 |
>>> adata = ep.dt.mimic_2(encoded=False) |
|
|
786 |
>>> # Flip 'censor_fl' because 0 = death and 1 = censored |
|
|
787 |
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0) |
|
|
788 |
>>> naf = ep.tl.nelson_aalen(adata, "mort_day_censored", "censor_flg") |
|
|
789 |
""" |
|
|
790 |
return _univariate_model( |
|
|
791 |
adata, |
|
|
792 |
duration_col, |
|
|
793 |
event_col, |
|
|
794 |
NelsonAalenFitter, |
|
|
795 |
uns_key=uns_key, |
|
|
796 |
accept_zero_duration=True, |
|
|
797 |
timeline=timeline, |
|
|
798 |
entry=entry, |
|
|
799 |
label=label, |
|
|
800 |
alpha=alpha, |
|
|
801 |
ci_labels=ci_labels, |
|
|
802 |
weights=weights, |
|
|
803 |
fit_options=fit_options, |
|
|
804 |
censoring=censoring, |
|
|
805 |
) |
|
|
806 |
|
|
|
807 |
|
|
|
808 |
def weibull( |
|
|
809 |
adata: AnnData, |
|
|
810 |
duration_col: str, |
|
|
811 |
event_col: str, |
|
|
812 |
*, |
|
|
813 |
uns_key: str = "weibull", |
|
|
814 |
timeline: list[float] | None = None, |
|
|
815 |
entry: str | None = None, |
|
|
816 |
label: str | None = None, |
|
|
817 |
alpha: float | None = None, |
|
|
818 |
ci_labels: list[str] | None = None, |
|
|
819 |
weights: list[float] | None = None, |
|
|
820 |
fit_options: dict | None = None, |
|
|
821 |
) -> WeibullFitter: |
|
|
822 |
"""Employ the Weibull model in univariate survival analysis to understand event occurrence dynamics. |
|
|
823 |
|
|
|
824 |
In contrast to the non-parametric Nelson-Aalen estimator, the Weibull model employs a parametric approach with shape and scale parameters, |
|
|
825 |
enabling a more structured analysis of survival data. |
|
|
826 |
This technique is particularly useful when dealing with censored data, as it accounts for the presence of individuals whose event times are unknown due to censoring. |
|
|
827 |
By fitting the Weibull model to censored survival data, researchers can estimate these parameters and gain insights |
|
|
828 |
into the hazard rate over time, facilitating comparisons between different groups or treatments. |
|
|
829 |
This method provides a comprehensive framework for examining survival data and offers valuable insights into the factors influencing event occurrence dynamics. |
|
|
830 |
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'weibull' unless specified otherwise in the `uns_key` parameter. |
|
|
831 |
See https://lifelines.readthedocs.io/en/latest/fitters/univariate/WeibullFitter.html |
|
|
832 |
|
|
|
833 |
Args: |
|
|
834 |
adata: AnnData object. |
|
|
835 |
duration_col: Name of the column in the AnnData objects that contains the subjects’ lifetimes. |
|
|
836 |
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored. |
|
|
837 |
Column values are `True` if the event was observed, `False` if the event was lost (right-censored). |
|
|
838 |
If left `None`, all individuals are assumed to be uncensored. |
|
|
839 |
uns_key: The key to use for the `.uns` slot in the AnnData object. |
|
|
840 |
timeline: Return the best estimate at the values in timelines (positively increasing) |
|
|
841 |
entry: Relative time when a subject entered the study. This is useful for left-truncated (not left-censored) observations. |
|
|
842 |
If None, all members of the population entered study when they were "born". |
|
|
843 |
label: A string to name the column of the estimate. |
|
|
844 |
alpha: The alpha value in the confidence intervals. Overrides the initializing alpha for this call to fit only. |
|
|
845 |
ci_labels: Add custom column names to the generated confidence intervals as a length-2 list: [<lower-bound name>, <upper-bound name>] (default: <label>_lower_<1-alpha/2>). |
|
|
846 |
weights: If providing a weighted dataset. For example, instead of providing every subject |
|
|
847 |
as a single element of `durations` and `event_observed`, one could weigh subject differently. |
|
|
848 |
fit_options: Additional keyword arguments to pass into the estimator. |
|
|
849 |
|
|
|
850 |
Returns: |
|
|
851 |
Fitted WeibullFitter. |
|
|
852 |
|
|
|
853 |
Examples: |
|
|
854 |
>>> import ehrapy as ep |
|
|
855 |
>>> adata = ep.dt.mimic_2(encoded=False) |
|
|
856 |
>>> # Flip 'censor_fl' because 0 = death and 1 = censored |
|
|
857 |
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0) |
|
|
858 |
>>> wf = ep.tl.weibull(adata, "mort_day_censored", "censor_flg") |
|
|
859 |
""" |
|
|
860 |
return _univariate_model( |
|
|
861 |
adata, |
|
|
862 |
duration_col, |
|
|
863 |
event_col, |
|
|
864 |
WeibullFitter, |
|
|
865 |
uns_key=uns_key, |
|
|
866 |
accept_zero_duration=False, |
|
|
867 |
timeline=timeline, |
|
|
868 |
entry=entry, |
|
|
869 |
label=label, |
|
|
870 |
alpha=alpha, |
|
|
871 |
ci_labels=ci_labels, |
|
|
872 |
weights=weights, |
|
|
873 |
fit_options=fit_options, |
|
|
874 |
) |