[e5f1db]: / ehrapy / tools / _sa.py

Download this file

875 lines (764 with data), 42.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
from __future__ import annotations
import warnings
from typing import TYPE_CHECKING, Literal
import numpy as np # noqa: TC002
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
from lifelines import (
CoxPHFitter,
KaplanMeierFitter,
LogLogisticAFTFitter,
NelsonAalenFitter,
WeibullAFTFitter,
WeibullFitter,
)
from lifelines.statistics import StatisticalResult, logrank_test
from scipy import stats
from ehrapy.anndata import anndata_to_df
from ehrapy.anndata._constants import CATEGORICAL_TAG, FEATURE_TYPE_KEY, NUMERIC_TAG
if TYPE_CHECKING:
from collections.abc import Iterable
from anndata import AnnData
from statsmodels.genmod.generalized_linear_model import GLMResultsWrapper
def ols(
adata: AnnData,
var_names: list[str] | None | None = None,
formula: str | None = None,
missing: Literal["none", "drop", "raise"] | None = "none",
use_feature_types: bool = False,
) -> sm.OLS:
"""Create an Ordinary Least Squares (OLS) Model from a formula and AnnData.
See https://www.statsmodels.org/stable/generated/statsmodels.formula.api.ols.html#statsmodels.formula.api.ols
Args:
adata: The AnnData object for the OLS model.
var_names: A list of var names indicating which columns are for the OLS model.
formula: The formula specifying the model.
use_feature_types: If True, the feature types in the AnnData objects .var are used.
missing: Available options are 'none', 'drop', and 'raise'.
If 'none', no nan checking is done. If 'drop', any observations with nans are dropped.
If 'raise', an error is raised.
Returns:
The OLS model instance.
Examples:
>>> import ehrapy as ep
>>> adata = ep.dt.mimic_2(encoded=False)
>>> formula = "tco2_first ~ pco2_first"
>>> var_names = ["tco2_first", "pco2_first"]
>>> ols = ep.tl.ols(adata, var_names, formula, missing="drop")
"""
if isinstance(var_names, list):
data = pd.DataFrame(adata[:, var_names].X, columns=var_names)
else:
data = pd.DataFrame(adata.X, columns=adata.var_names)
if use_feature_types:
for col in data.columns:
if col in adata.var.index:
feature_type = adata.var[FEATURE_TYPE_KEY][col]
if feature_type == CATEGORICAL_TAG:
data[col] = data[col].astype("category")
elif feature_type == NUMERIC_TAG:
data[col] = data[col].astype(float)
else:
data = data.astype(float)
ols = smf.ols(formula, data=data, missing=missing)
return ols
def glm(
adata: AnnData,
var_names: Iterable[str] | None = None,
formula: str | None = None,
family: Literal["Gaussian", "Binomial", "Gamma", "Gaussian", "InverseGaussian"] = "Gaussian",
use_feature_types: bool = False,
missing: Literal["none", "drop", "raise"] = "none",
as_continuous: Iterable[str] | None | None = None,
) -> sm.GLM:
"""Create a Generalized Linear Model (GLM) from a formula, a distribution, and AnnData.
See https://www.statsmodels.org/stable/generated/statsmodels.formula.api.glm.html#statsmodels.formula.api.glm
Args:
adata: The AnnData object for the GLM model.
var_names: A list of var names indicating which columns are for the GLM model.
formula: The formula specifying the model.
family: The distribution families. Available options are 'Gaussian', 'Binomial', 'Gamma', and 'InverseGaussian'.
use_feature_types: If True, the feature types in the AnnData objects .var are used.
missing: Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done.
If 'drop', any observations with nans are dropped. If 'raise', an error is raised.
as_continuous: A list of var names indicating which columns are continuous rather than categorical.
The corresponding columns will be set as type float.
Returns:
The GLM model instance.
Examples:
>>> import ehrapy as ep
>>> adata = ep.dt.mimic_2(encoded=False)
>>> formula = "day_28_flg ~ age"
>>> var_names = ["day_28_flg", "age"]
>>> family = "Binomial"
>>> glm = ep.tl.glm(adata, var_names, formula, family, missing="drop", as_continuous=["age"])
"""
family_dict = {
"Gaussian": sm.families.Gaussian(),
"Binomial": sm.families.Binomial(),
"Gamma": sm.families.Gamma(),
"InverseGaussian": sm.families.InverseGaussian(),
}
if family in ["Gaussian", "Binomial", "Gamma", "Gaussian", "InverseGaussian"]:
family = family_dict[family]
if isinstance(var_names, list):
data = pd.DataFrame(adata[:, var_names].X, columns=var_names)
else:
data = pd.DataFrame(adata.X, columns=adata.var_names)
if as_continuous is not None:
data[as_continuous] = data[as_continuous].astype(float)
if use_feature_types:
for col in data.columns:
if col in adata.var.index:
feature_type = adata.var[FEATURE_TYPE_KEY][col]
if feature_type == CATEGORICAL_TAG:
data[col] = data[col].astype("category")
elif feature_type == NUMERIC_TAG:
data[col] = data[col].astype(float)
glm = smf.glm(formula, data=data, family=family, missing=missing)
return glm
def kmf(
durations: Iterable,
event_observed: Iterable | None = None,
timeline: Iterable = None,
entry: Iterable | None = None,
label: str | None = None,
alpha: float | None = None,
ci_labels: tuple[str, str] = None,
weights: Iterable | None = None,
censoring: Literal["right", "left"] = None,
) -> KaplanMeierFitter:
"""DEPRECATION WARNING: This function is deprecated and will be removed in the next release. Use `kaplan_meier` instead.
Fit the Kaplan-Meier estimate for the survival function.
The Kaplan–Meier estimator, also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data.
In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment.
See https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator
https://lifelines.readthedocs.io/en/latest/fitters/univariate/KaplanMeierFitter.html#module-lifelines.fitters.kaplan_meier_fitter
Args:
durations: length n -- duration (relative to subject's birth) the subject was alive for.
event_observed: True if the death was observed, False if the event was lost (right-censored). Defaults to all True if event_observed is equal to `None`.
timeline: return the best estimate at the values in timelines (positively increasing)
entry: Relative time when a subject entered the study. This is useful for left-truncated (not left-censored) observations.
If None, all members of the population entered study when they were "born".
label: A string to name the column of the estimate.
alpha: The alpha value in the confidence intervals. Overrides the initializing alpha for this call to fit only.
ci_labels: Add custom column names to the generated confidence intervals as a length-2 list: [<lower-bound name>, <upper-bound name>] (default: <label>_lower_<1-alpha/2>).
weights: If providing a weighted dataset. For example, instead of providing every subject
as a single element of `durations` and `event_observed`, one could weigh subject differently.
censoring: 'right' for fitting the model to a right-censored dataset.
'left' for fitting the model to a left-censored dataset (default: fit the model to a right-censored dataset).
Returns:
Fitted KaplanMeierFitter.
Examples:
>>> import ehrapy as ep
>>> adata = ep.dt.mimic_2(encoded=False)
>>> # Flip 'censor_fl' because 0 = death and 1 = censored
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0)
>>> kmf = ep.tl.kmf(adata[:, ["mort_day_censored"]].X, adata[:, ["censor_flg"]].X)
"""
warnings.warn(
"This function is deprecated and will be removed in the next release. Use `ep.tl.kaplan_meier` instead.",
DeprecationWarning,
stacklevel=2,
)
kmf = KaplanMeierFitter()
if censoring == "None" or "right":
kmf.fit(
durations=durations,
event_observed=event_observed,
timeline=timeline,
entry=entry,
label=label,
alpha=alpha,
ci_labels=ci_labels,
weights=weights,
)
elif censoring == "left":
kmf.fit_left_censoring(
durations=durations,
event_observed=event_observed,
timeline=timeline,
entry=entry,
label=label,
alpha=alpha,
ci_labels=ci_labels,
weights=weights,
)
return kmf
def kaplan_meier(
adata: AnnData,
duration_col: str,
event_col: str | None = None,
*,
uns_key: str = "kaplan_meier",
timeline: list[float] | None = None,
entry: str | None = None,
label: str | None = None,
alpha: float | None = None,
ci_labels: list[str] | None = None,
weights: list[float] | None = None,
fit_options: dict | None = None,
censoring: Literal["right", "left"] = "right",
) -> KaplanMeierFitter:
"""Fit the Kaplan-Meier estimate for the survival function.
The Kaplan–Meier estimator, also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data.
In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment.
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'kaplan_meier' unless specified otherwise in the `uns_key` parameter.
See https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator
https://lifelines.readthedocs.io/en/latest/fitters/univariate/KaplanMeierFitter.html#module-lifelines.fitters.kaplan_meier_fitter
Args:
adata: AnnData object.
duration_col: The name of the column in the AnnData object that contains the subjects’ lifetimes.
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored.
Column values are `True` if the event was observed, `False` if the event was lost (right-censored).
If left `None`, all individuals are assumed to be uncensored.
uns_key: The key to use for the `.uns` slot in the AnnData object.
timeline: Return the best estimate at the values in timelines (positively increasing)
entry: Relative time when a subject entered the study. This is useful for left-truncated (not left-censored) observations.
If None, all members of the population entered study when they were "born".
label: A string to name the column of the estimate.
alpha: The alpha value in the confidence intervals. Overrides the initializing alpha for this call to fit only.
ci_labels: Add custom column names to the generated confidence intervals as a length-2 list: [<lower-bound name>, <upper-bound name>] (default: <label>_lower_<1-alpha/2>).
weights: If providing a weighted dataset. For example, instead of providing every subject
as a single element of `durations` and `event_observed`, one could weigh subject differently.
fit_options: Additional keyword arguments to pass into the estimator.
censoring: 'right' for fitting the model to a right-censored dataset. (default, calls fit).
'left' for fitting the model to a left-censored dataset (calls fit_left_censoring).
Returns:
Fitted KaplanMeierFitter.
Examples:
>>> import ehrapy as ep
>>> adata = ep.dt.mimic_2(encoded=False)
>>> # Flip 'censor_fl' because 0 = death and 1 = censored
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0)
>>> kmf = ep.tl.kaplan_meier(adata, "mort_day_censored", "censor_flg", label="Mortality")
"""
return _univariate_model(
adata,
duration_col,
event_col,
KaplanMeierFitter,
uns_key,
True,
timeline,
entry,
label,
alpha,
ci_labels,
weights,
fit_options,
censoring,
)
def test_kmf_logrank(
kmf_A: KaplanMeierFitter,
kmf_B: KaplanMeierFitter,
t_0: float | None = -1,
weightings: Literal["wilcoxon", "tarone-ware", "peto", "fleming-harrington"] | None = None,
) -> StatisticalResult:
"""Calculates the p-value for the logrank test comparing the survival functions of two groups.
Measures and reports on whether two intensity processes are different.
That is, given two event series, determines whether the data generating processes are statistically different.
The test-statistic is chi-squared under the null hypothesis.
See https://lifelines.readthedocs.io/en/latest/lifelines.statistics.html
Args:
kmf_A: The first KaplanMeierFitter object containing the durations and events.
kmf_B: The second KaplanMeierFitter object containing the durations and events.
t_0: The final time period under observation, and subjects who experience the event after this time are set to be censored.
Specify -1 to use all time.
weightings: Apply a weighted logrank test: options are "wilcoxon" for Wilcoxon (also known as Breslow), "tarone-ware"
for Tarone-Ware, "peto" for Peto test and "fleming-harrington" for Fleming-Harrington test.
These are useful for testing for early or late differences in the survival curve. For the Fleming-Harrington
test, keyword arguments p and q must also be provided with non-negative values.
Returns:
The p-value for the logrank test comparing the survival functions of the two groups.
"""
results_pairwise = logrank_test(
durations_A=kmf_A.durations,
durations_B=kmf_B.durations,
event_observed_A=kmf_A.event_observed,
event_observed_B=kmf_B.event_observed,
weights_A=kmf_A.weights,
weights_B=kmf_B.weights,
t_0=t_0,
weightings=weightings,
)
return results_pairwise
def test_nested_f_statistic(small_model: GLMResultsWrapper, big_model: GLMResultsWrapper) -> float:
"""Calculate the P value indicating if a larger GLM, encompassing a smaller GLM's parameters, adds explanatory power.
See https://stackoverflow.com/questions/27328623/anova-test-for-glm-in-python/60769343#60769343
Args:
small_model: fitted generalized linear models.
big_model: fitted generalized linear models.
Returns:
float: p_value of Anova test.
"""
addtl_params = big_model.df_model - small_model.df_model
f_stat = (small_model.deviance - big_model.deviance) / (addtl_params * big_model.scale)
df_numerator = addtl_params
df_denom = big_model.fittedvalues.shape[0] - big_model.df_model
p_value = stats.f.sf(f_stat, df_numerator, df_denom)
return p_value
def anova_glm(result_1: GLMResultsWrapper, result_2: GLMResultsWrapper, formula_1: str, formula_2: str) -> pd.DataFrame:
"""Anova table for two fitted generalized linear models.
Args:
result_1: fitted generalized linear models.
result_2: fitted generalized linear models.
formula_1: The formula specifying the model.
formula_2: The formula specifying the model.
Returns:
pd.DataFrame: Anova table.
"""
p_value = test_nested_f_statistic(result_1, result_2)
table = {
"Model": [1, 2],
"formula": [formula_1, formula_2],
"Df Resid.": [result_1.df_resid, result_2.df_resid],
"Dev.": [result_1.deviance, result_2.deviance],
"Df_diff": [None, result_2.df_model - result_1.df_model],
"Pr(>Chi)": [None, p_value],
}
dataframe = pd.DataFrame(data=table)
return dataframe
def _build_model_input_dataframe(adata: AnnData, duration_col: str, accept_zero_duration=True):
"""Convenience function for regression models."""
df = anndata_to_df(adata)
df = df.dropna()
if not accept_zero_duration:
df.loc[df[duration_col] == 0, duration_col] += 1e-5
return df
def cox_ph(
adata: AnnData,
duration_col: str,
event_col: str = None,
*,
uns_key: str = "cox_ph",
alpha: float = 0.05,
label: str | None = None,
baseline_estimation_method: Literal["breslow", "spline", "piecewise"] = "breslow",
penalizer: float | np.ndarray = 0.0,
l1_ratio: float = 0.0,
strata: list[str] | str | None = None,
n_baseline_knots: int = 4,
knots: list[float] | None = None,
breakpoints: list[float] | None = None,
weights_col: str | None = None,
cluster_col: str | None = None,
entry_col: str = None,
robust: bool = False,
formula: str = None,
batch_mode: bool = None,
show_progress: bool = False,
initial_point: np.ndarray | None = None,
fit_options: dict | None = None,
) -> CoxPHFitter:
"""Fit the Cox’s proportional hazard for the survival function.
The Cox proportional hazards model (CoxPH) examines the relationship between the survival time of subjects and one or more predictor variables.
It models the hazard rate as a product of a baseline hazard function and an exponential function of the predictors, assuming proportional hazards over time.
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'cox_ph' unless specified otherwise in the `uns_key` parameter.
See https://lifelines.readthedocs.io/en/latest/fitters/regression/CoxPHFitter.html
Args:
adata: AnnData object.
duration_col: The name of the column in the AnnData objects that contains the subjects’ lifetimes.
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored.
Column values are `True` if the event was observed, `False` if the event was lost (right-censored).
If left `None`, all individuals are assumed to be uncensored.
uns_key: The key to use for the `.uns` slot in the AnnData object.
alpha: The alpha value in the confidence intervals.
label: The name of the column of the estimate.
baseline_estimation_method: The method used to estimate the baseline hazard. Options are 'breslow', 'spline', and 'piecewise'.
penalizer: Attach a penalty to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates.
l1_ratio: Specify what ratio to assign to a L1 vs L2 penalty. Same as scikit-learn. See penalizer above.
strata: specify a list of columns to use in stratification. This is useful if a categorical covariate does not obey the proportional hazard assumption. This is used similar to the strata expression in R. See http://courses.washington.edu/b515/l17.pdf.
n_baseline_knots: Used when baseline_estimation_method="spline". Set the number of knots (interior & exterior) in the baseline hazard, which will be placed evenly along the time axis. Should be at least 2. Royston et. al, the authors of this model, suggest 4 to start, but any values between 2 and 8 are reasonable. If you need to customize the timestamps used to calculate the curve, use the knots parameter instead.
knots: When baseline_estimation_method="spline", this allows customizing the points in the time axis for the baseline hazard curve. To use evenly-spaced points in time, the n_baseline_knots parameter can be employed instead.
breakpoints: Used when baseline_estimation_method="piecewise". Set the positions of the baseline hazard breakpoints.
weights_col: The name of the column in DataFrame that contains the weights for each subject.
cluster_col: The name of the column in DataFrame that contains the cluster variable. Using this forces the sandwich estimator (robust variance estimator) to be used.
entry_col: Column denoting when a subject entered the study, i.e. left-truncation.
robust: Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ.
formula: an Wilkinson formula, like in R and statsmodels, for the right-hand-side. If left as None, all columns not assigned as durations, weights, etc. are used. Uses the library Formulaic for parsing.
batch_mode: Enabling batch_mode can be faster for datasets with a large number of ties. If left as `None`, lifelines will choose the best option.
show_progress: Since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing.
initial_point: set the starting point for the iterative solver.
fit_options: Additional keyword arguments to pass into the estimator.
Returns:
Fitted CoxPHFitter.
Examples:
>>> import ehrapy as ep
>>> adata = ep.dt.mimic_2(encoded=False)
>>> # Flip 'censor_fl' because 0 = death and 1 = censored
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0)
>>> cph = ep.tl.cox_ph(adata, "mort_day_censored", "censor_flg")
"""
df = _build_model_input_dataframe(adata, duration_col)
cox_ph = CoxPHFitter(
alpha=alpha,
label=label,
strata=strata,
baseline_estimation_method=baseline_estimation_method,
penalizer=penalizer,
l1_ratio=l1_ratio,
n_baseline_knots=n_baseline_knots,
knots=knots,
breakpoints=breakpoints,
)
cox_ph.fit(
df,
duration_col=duration_col,
event_col=event_col,
entry_col=entry_col,
robust=robust,
initial_point=initial_point,
weights_col=weights_col,
cluster_col=cluster_col,
batch_mode=batch_mode,
formula=formula,
fit_options=fit_options,
show_progress=show_progress,
)
summary = cox_ph.summary
adata.uns[uns_key] = summary
return cox_ph
def weibull_aft(
adata: AnnData,
duration_col: str,
event_col: str,
*,
uns_key: str = "weibull_aft",
alpha: float = 0.05,
fit_intercept: bool = True,
penalizer: float | np.ndarray = 0.0,
l1_ratio: float = 0.0,
model_ancillary: bool = True,
ancillary: bool | pd.DataFrame | str | None = None,
show_progress: bool = False,
weights_col: str | None = None,
robust: bool = False,
initial_point=None,
entry_col: str | None = None,
formula: str | None = None,
fit_options: dict | None = None,
) -> WeibullAFTFitter:
"""Fit the Weibull accelerated failure time regression for the survival function.
The Weibull Accelerated Failure Time (AFT) survival regression model is a statistical method used to analyze time-to-event data,
where the underlying assumption is that the logarithm of survival time follows a Weibull distribution.
It models the survival time as an exponential function of the predictors, assuming a specific shape parameter
for the distribution and allowing for accelerated or decelerated failure times based on the covariates.
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'weibull_aft' unless specified otherwise in the `uns_key` parameter.
See https://lifelines.readthedocs.io/en/latest/fitters/regression/WeibullAFTFitter.html
Args:
adata: AnnData object.
duration_col: Name of the column in the AnnData objects that contains the subjects’ lifetimes.
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored.
Column values are `True` if the event was observed, `False` if the event was lost (right-censored).
If left `None`, all individuals are assumed to be uncensored.
uns_key: The key to use for the `.uns` slot in the AnnData object.
alpha: The alpha value in the confidence intervals.
fit_intercept: Whether to fit an intercept term in the model.
penalizer: Attach a penalty to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates.
l1_ratio: Specify what ratio to assign to a L1 vs L2 penalty. Same as scikit-learn. See penalizer above.
model_ancillary: set the model instance to always model the ancillary parameter with the supplied Dataframe. This is useful for grid-search optimization.
ancillary: Choose to model the ancillary parameters.
If None or False, explicitly do not fit the ancillary parameters using any covariates.
If True, model the ancillary parameters with the same covariates as ``df``.
If DataFrame, provide covariates to model the ancillary parameters. Must be the same row count as ``df``.
If str, should be a formula
show_progress: since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing.
weights_col: The name of the column in DataFrame that contains the weights for each subject.
robust: Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ.
initial_point: set the starting point for the iterative solver.
entry_col: Column denoting when a subject entered the study, i.e. left-truncation.
formula: Use an R-style formula for modeling the dataset. See formula syntax: https://matthewwardrop.github.io/formulaic/basic/grammar/
If a formula is not provided, all variables in the dataframe are used (minus those used for other purposes like event_col, etc.)
fit_options: Additional keyword arguments to pass into the estimator.
Returns:
Fitted WeibullAFTFitter.
Examples:
>>> import ehrapy as ep
>>> adata = ep.dt.mimic_2(encoded=False)
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0)
>>> adata = adata[:, ["mort_day_censored", "censor_flg"]]
>>> aft = ep.tl.weibull_aft(adata, duration_col="mort_day_censored", event_col="censor_flg")
>>> aft.print_summary()
"""
df = _build_model_input_dataframe(adata, duration_col, accept_zero_duration=False)
weibull_aft = WeibullAFTFitter(
alpha=alpha,
fit_intercept=fit_intercept,
penalizer=penalizer,
l1_ratio=l1_ratio,
model_ancillary=model_ancillary,
)
weibull_aft.fit(
df,
duration_col=duration_col,
event_col=event_col,
entry_col=entry_col,
ancillary=ancillary,
show_progress=show_progress,
weights_col=weights_col,
robust=robust,
initial_point=initial_point,
formula=formula,
fit_options=fit_options,
)
summary = weibull_aft.summary
adata.uns[uns_key] = summary
return weibull_aft
def log_logistic_aft(
adata: AnnData,
duration_col: str,
event_col: str | None = None,
*,
uns_key: str = "log_logistic_aft",
alpha: float = 0.05,
fit_intercept: bool = True,
penalizer: float | np.ndarray = 0.0,
l1_ratio: float = 0.0,
model_ancillary: bool = False,
ancillary: bool | pd.DataFrame | str | None = None,
show_progress: bool = False,
weights_col: str | None = None,
robust: bool = False,
initial_point=None,
entry_col: str | None = None,
formula: str | None = None,
fit_options: dict | None = None,
) -> LogLogisticAFTFitter:
"""Fit the log logistic accelerated failure time regression for the survival function.
The Log-Logistic Accelerated Failure Time (AFT) survival regression model is a powerful statistical tool employed in the analysis of time-to-event data.
This model operates under the assumption that the logarithm of survival time adheres to a log-logistic distribution, offering a flexible framework for understanding the impact of covariates on survival times.
By modeling survival time as a function of predictors, the Log-Logistic AFT model enables researchers to explore
how specific factors influence the acceleration or deceleration of failure times, providing valuable insights into the underlying mechanisms driving event occurrence.
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'log_logistic_aft' unless specified otherwise in the `uns_key` parameter.
See https://lifelines.readthedocs.io/en/latest/fitters/regression/LogLogisticAFTFitter.html
Args:
adata: AnnData object.
duration_col: Name of the column in the AnnData objects that contains the subjects’ lifetimes.
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored.
Column values are `True` if the event was observed, `False` if the event was lost (right-censored).
If left `None`, all individuals are assumed to be uncensored.
uns_key: The key to use for the `.uns` slot in the AnnData object.
alpha: The alpha value in the confidence intervals.
fit_intercept: Whether to fit an intercept term in the model.
penalizer: Attach a penalty to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates.
l1_ratio: Specify what ratio to assign to a L1 vs L2 penalty. Same as scikit-learn. See penalizer above.
model_ancillary: Set the model instance to always model the ancillary parameter with the supplied Dataframe. This is useful for grid-search optimization.
ancillary: Choose to model the ancillary parameters.
If None or False, explicitly do not fit the ancillary parameters using any covariates.
If True, model the ancillary parameters with the same covariates as ``df``.
If DataFrame, provide covariates to model the ancillary parameters. Must be the same row count as ``df``.
If str, should be a formula
show_progress: Since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing.
weights_col: The name of the column in DataFrame that contains the weights for each subject.
robust: Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ.
initial_point: set the starting point for the iterative solver.
entry_col: Column denoting when a subject entered the study, i.e. left-truncation.
formula: Use an R-style formula for modeling the dataset. See formula syntax: https://matthewwardrop.github.io/formulaic/basic/grammar/
If a formula is not provided, all variables in the dataframe are used (minus those used for other purposes like event_col, etc.)
fit_options: Additional keyword arguments to pass into the estimator.
Returns:
Fitted LogLogisticAFTFitter.
Examples:
>>> import ehrapy as ep
>>> adata = ep.dt.mimic_2(encoded=False)
>>> # Flip 'censor_fl' because 0 = death and 1 = censored
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0)
>>> adata = adata[:, ["mort_day_censored", "censor_flg"]]
>>> llf = ep.tl.log_logistic_aft(adata, duration_col="mort_day_censored", event_col="censor_flg")
"""
df = _build_model_input_dataframe(adata, duration_col, accept_zero_duration=False)
log_logistic_aft = LogLogisticAFTFitter(
alpha=alpha,
fit_intercept=fit_intercept,
penalizer=penalizer,
l1_ratio=l1_ratio,
model_ancillary=model_ancillary,
)
log_logistic_aft.fit(
df,
duration_col=duration_col,
event_col=event_col,
entry_col=entry_col,
ancillary=ancillary,
show_progress=show_progress,
weights_col=weights_col,
robust=robust,
initial_point=initial_point,
formula=formula,
fit_options=fit_options,
)
summary = log_logistic_aft.summary
adata.uns[uns_key] = summary
return log_logistic_aft
def _univariate_model(
adata: AnnData,
duration_col: str,
event_col: str,
model_class,
uns_key: str,
accept_zero_duration=True,
timeline: list[float] | None = None,
entry: str | None = None,
label: str | None = None,
alpha: float | None = None,
ci_labels: list[str] | None = None,
weights: list[float] | None = None,
fit_options: dict | None = None,
censoring: Literal["right", "left"] = "right",
):
"""Convenience function for univariate models."""
df = _build_model_input_dataframe(adata, duration_col, accept_zero_duration)
T = df[duration_col]
E = df[event_col]
model = model_class()
function_name = "fit" if censoring == "right" else "fit_left_censoring"
# get fit function, default to fit if not found
fit_function = getattr(model, function_name, model.fit)
fit_function(
T,
event_observed=E,
timeline=timeline,
entry=entry,
label=label,
alpha=alpha,
ci_labels=ci_labels,
weights=weights,
fit_options=fit_options,
)
if isinstance(model, NelsonAalenFitter) or isinstance(
model, KaplanMeierFitter
): # NelsonAalenFitter and KaplanMeierFitter have no summary attribute
summary = model.event_table
else:
summary = model.summary
adata.uns[uns_key] = summary
return model
def nelson_aalen(
adata: AnnData,
duration_col: str,
event_col: str | None = None,
*,
uns_key: str = "nelson_aalen",
timeline: list[float] | None = None,
entry: str | None = None,
label: str | None = None,
alpha: float | None = None,
ci_labels: list[str] | None = None,
weights: list[float] | None = None,
fit_options: dict | None = None,
censoring: Literal["right", "left"] = "right",
) -> NelsonAalenFitter:
"""Employ the Nelson-Aalen estimator to estimate the cumulative hazard function from censored survival data.
The Nelson-Aalen estimator is a non-parametric method used in survival analysis to estimate the cumulative hazard function.
This technique is particularly useful when dealing with censored data, as it accounts for the presence of individuals whose event times are unknown due to censoring.
By estimating the cumulative hazard function, the Nelson-Aalen estimator allows researchers to assess the risk of an event occurring over time, providing valuable insights into the underlying dynamics of the survival process.
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'nelson_aalen' unless specified otherwise in the `uns_key` parameter.
See https://lifelines.readthedocs.io/en/latest/fitters/univariate/NelsonAalenFitter.html
Args:
adata: AnnData object.
duration_col: The name of the column in the AnnData objects that contains the subjects’ lifetimes.
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored.
Column values are `True` if the event was observed, `False` if the event was lost (right-censored).
If left `None`, all individuals are assumed to be uncensored.
uns_key: The key to use for the `.uns` slot in the AnnData object.
timeline: Return the best estimate at the values in timelines (positively increasing)
entry: Relative time when a subject entered the study. This is useful for left-truncated (not left-censored) observations.
If None, all members of the population entered study when they were "born".
label: A string to name the column of the estimate.
alpha: The alpha value in the confidence intervals. Overrides the initializing alpha for this call to fit only.
ci_labels: Add custom column names to the generated confidence intervals as a length-2 list: [<lower-bound name>, <upper-bound name>] (default: <label>_lower_<1-alpha/2>).
weights: If providing a weighted dataset. For example, instead of providing every subject
as a single element of `durations` and `event_observed`, one could weigh subject differently.
fit_options: Additional keyword arguments to pass into the estimator.
censoring: 'right' for fitting the model to a right-censored dataset. (default, calls fit).
'left' for fitting the model to a left-censored dataset (calls fit_left_censoring).
Returns:
Fitted NelsonAalenFitter.
Examples:
>>> import ehrapy as ep
>>> adata = ep.dt.mimic_2(encoded=False)
>>> # Flip 'censor_fl' because 0 = death and 1 = censored
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0)
>>> naf = ep.tl.nelson_aalen(adata, "mort_day_censored", "censor_flg")
"""
return _univariate_model(
adata,
duration_col,
event_col,
NelsonAalenFitter,
uns_key=uns_key,
accept_zero_duration=True,
timeline=timeline,
entry=entry,
label=label,
alpha=alpha,
ci_labels=ci_labels,
weights=weights,
fit_options=fit_options,
censoring=censoring,
)
def weibull(
adata: AnnData,
duration_col: str,
event_col: str,
*,
uns_key: str = "weibull",
timeline: list[float] | None = None,
entry: str | None = None,
label: str | None = None,
alpha: float | None = None,
ci_labels: list[str] | None = None,
weights: list[float] | None = None,
fit_options: dict | None = None,
) -> WeibullFitter:
"""Employ the Weibull model in univariate survival analysis to understand event occurrence dynamics.
In contrast to the non-parametric Nelson-Aalen estimator, the Weibull model employs a parametric approach with shape and scale parameters,
enabling a more structured analysis of survival data.
This technique is particularly useful when dealing with censored data, as it accounts for the presence of individuals whose event times are unknown due to censoring.
By fitting the Weibull model to censored survival data, researchers can estimate these parameters and gain insights
into the hazard rate over time, facilitating comparisons between different groups or treatments.
This method provides a comprehensive framework for examining survival data and offers valuable insights into the factors influencing event occurrence dynamics.
The results will be stored in the `.uns` slot of the :class:`AnnData` object under the key 'weibull' unless specified otherwise in the `uns_key` parameter.
See https://lifelines.readthedocs.io/en/latest/fitters/univariate/WeibullFitter.html
Args:
adata: AnnData object.
duration_col: Name of the column in the AnnData objects that contains the subjects’ lifetimes.
event_col: The name of the column in the AnnData object that specifies whether the event has been observed, or censored.
Column values are `True` if the event was observed, `False` if the event was lost (right-censored).
If left `None`, all individuals are assumed to be uncensored.
uns_key: The key to use for the `.uns` slot in the AnnData object.
timeline: Return the best estimate at the values in timelines (positively increasing)
entry: Relative time when a subject entered the study. This is useful for left-truncated (not left-censored) observations.
If None, all members of the population entered study when they were "born".
label: A string to name the column of the estimate.
alpha: The alpha value in the confidence intervals. Overrides the initializing alpha for this call to fit only.
ci_labels: Add custom column names to the generated confidence intervals as a length-2 list: [<lower-bound name>, <upper-bound name>] (default: <label>_lower_<1-alpha/2>).
weights: If providing a weighted dataset. For example, instead of providing every subject
as a single element of `durations` and `event_observed`, one could weigh subject differently.
fit_options: Additional keyword arguments to pass into the estimator.
Returns:
Fitted WeibullFitter.
Examples:
>>> import ehrapy as ep
>>> adata = ep.dt.mimic_2(encoded=False)
>>> # Flip 'censor_fl' because 0 = death and 1 = censored
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0)
>>> wf = ep.tl.weibull(adata, "mort_day_censored", "censor_flg")
"""
return _univariate_model(
adata,
duration_col,
event_col,
WeibullFitter,
uns_key=uns_key,
accept_zero_duration=False,
timeline=timeline,
entry=entry,
label=label,
alpha=alpha,
ci_labels=ci_labels,
weights=weights,
fit_options=fit_options,
)