[1de6ed]: / generate_data.py

Download this file

226 lines (168 with data), 8.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse
from utils import read_data, save_pickle, read_ade_data
from biobert_ner.utils_ner import generate_input_files
from biobert_re.utils_re import generate_re_input_files
from typing import List, Iterator, Dict
import warnings
import os
import re
labels = ['B-DRUG', 'I-DRUG', 'B-STR', 'I-STR', 'B-DUR', 'I-DUR',
'B-ROU', 'I-ROU', 'B-FOR', 'I-FOR', 'B-ADE', 'I-ADE',
'B-DOS', 'I-DOS', 'B-REA', 'I-REA', 'B-FRE', 'I-FRE', 'O']
def parse_arguments():
"""Parses program arguments"""
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str,
help="Task to be completed. 'NER', 'RE'. Default is 'NER'.",
default="NER")
parser.add_argument("--input_dir", type=str,
help="Directory with txt and ann files. Default is 'data/'.",
default="data/")
parser.add_argument("--ade_dir", type=str,
help="Directory with ADE corpus. Default is None.",
default=None)
parser.add_argument("--target_dir", type=str,
help="Directory to save files. Default is 'dataset/'.",
default='dataset/')
parser.add_argument("--max_seq_len", type=int,
help="Maximum sequence length. Default is 512.",
default=512)
parser.add_argument("--dev_split", type=float,
help="Ratio of dev data. Default is 0.1",
default=0.1)
parser.add_argument("--tokenizer", type=str,
help="The tokenizer to use. 'scispacy', 'scispacy_plus', 'biobert-base', 'biobert-large', 'default'.",
default="scispacy")
parser.add_argument("--ext", type=str,
help="Extension of target file. Default is txt.",
default="txt")
parser.add_argument("--sep", type=str,
help="Token-label separator. Default is a space.",
default=" ")
arguments = parser.parse_args()
return arguments
def default_tokenizer(sequence: str) -> List[str]:
"""A tokenizer that splits sequence by a whitespace."""
words = re.split("\n| |\t", sequence)
tokens = []
for word in words:
word = word.strip()
if not word:
continue
tokens.append(word)
return tokens
def scispacy_plus_tokenizer(sequence: str, scispacy_tok=None) -> Iterator[str]:
"""
Runs the scispacy tokenizer and removes all tokens with
just whitespace characters
"""
if scispacy_tok is None:
import en_ner_bc5cdr_md
scispacy_tok = en_ner_bc5cdr_md.load().tokenizer
scispacy_tokens = list(map(lambda x: str(x), scispacy_tok(sequence)))
tokens = filter(lambda t: not (' ' in t or '\n' in t or '\t' in t), scispacy_tokens)
return tokens
def ner_generator(files: Dict[str, tuple], args) -> None:
"""Generates files for NER"""
# Generate train, dev, test files
for filename, data in files.items():
generate_input_files(ehr_records=data[0], ade_records=data[1],
filename=args.target_dir + filename + '.' + args.ext,
max_len=args.max_seq_len, sep=args.sep)
save_pickle(args.target_dir + filename, {"EHR": data[0], "ADE": data[1]})
# Generate labels file
with open(args.target_dir + 'labels.txt', 'w') as file:
output_labels = map(lambda x: x + '\n', labels)
file.writelines(output_labels)
filenames = [name for files in map(
lambda x: [x + '.' + args.ext, x + '.pkl'],
list(files.keys()))
for name in files]
print("\nGenerating files successful. Files generated: ",
', '.join(filenames), ', labels.txt', sep='')
def re_generator(files: Dict[str, tuple], args):
"""Generates files for RE"""
for filename, data in files.items():
generate_re_input_files(ehr_records=data[0], ade_records=data[1],
filename=args.target_dir + filename + '.' + args.ext,
max_len=args.max_seq_len, sep=args.sep,
is_test=data[2], is_label=data[3])
save_pickle(args.target_dir + 'train', {"EHR": files['train'][0], "ADE": files['train'][1]})
save_pickle(args.target_dir + 'test', {"EHR": files['test'][0], "ADE": files['test'][1]})
print("\nGenerating files successful. Files generated: ",
'train.tsv,', 'dev.tsv,', 'test.tsv,',
'test_labels.tsv,', 'train_rel.pkl,', 'test_rel.pkl,', 'test_labels_rel.pkl', sep=' ')
def main():
args = parse_arguments()
if args.target_dir[-1] != '/':
args.target_dir += '/'
if args.sep == "tab":
args.sep = "\t"
if not os.path.isdir(args.target_dir):
os.mkdir(args.target_dir)
if args.tokenizer == "default":
tokenizer = default_tokenizer
is_bert_tokenizer = False
elif args.tokenizer == "scispacy":
import en_ner_bc5cdr_md
tokenizer = en_ner_bc5cdr_md.load().tokenizer
is_bert_tokenizer = False
elif args.tokenizer == 'scispacy_plus':
import en_ner_bc5cdr_md
scispacy_tok = en_ner_bc5cdr_md.load().tokenizer
scispacy_plus_tokenizer.__defaults__ = (scispacy_tok,)
tokenizer = scispacy_plus_tokenizer
is_bert_tokenizer = False
elif args.tokenizer == 'biobert-large':
from transformers import AutoTokenizer
biobert = AutoTokenizer.from_pretrained(
"dmis-lab/biobert-large-cased-v1.1")
args.max_seq_len -= biobert.num_special_tokens_to_add()
tokenizer = biobert.tokenize
is_bert_tokenizer = True
elif args.tokenizer == 'biobert-base':
from transformers import AutoTokenizer
biobert = AutoTokenizer.from_pretrained(
"dmis-lab/biobert-base-cased-v1.1")
args.max_seq_len -= biobert.num_special_tokens_to_add()
tokenizer = biobert.tokenize
is_bert_tokenizer = True
else:
warnings.warn("Tokenizer named " + args.tokenizer + " not found."
"Using default tokenizer instead. Acceptable values"
"include 'scispacy', 'biobert-base', 'biobert-large',"
"and 'default'.")
tokenizer = default_tokenizer
is_bert_tokenizer = False
print("\nReading data\n")
train_dev, test = read_data(data_dir=args.input_dir,
tokenizer=tokenizer,
is_bert_tokenizer=is_bert_tokenizer,
verbose=1)
if args.ade_dir is not None:
ade_train_dev = read_ade_data(ade_data_dir=args.ade_dir, verbose=1)
ade_dev_split_idx = int((1 - args.dev_split) * len(ade_train_dev))
ade_train = ade_train_dev[:ade_dev_split_idx]
ade_devel = ade_train_dev[ade_dev_split_idx:]
else:
ade_train_dev = None
ade_train = None
ade_devel = None
print('\n')
# Data is already shuffled, just split for dev set
dev_split_idx = int((1 - args.dev_split) * len(train_dev))
train = train_dev[:dev_split_idx]
devel = train_dev[dev_split_idx:]
# Data for NER
if args.task.lower() == 'ner':
files = {'train': (train, ade_train), 'train_dev': (train_dev, ade_train_dev),
'devel': (devel, ade_devel), 'test': (test, None)}
ner_generator(files, args)
# Data for RE
elif args.task.lower() == 're':
# {dataset_name: (ehr_data, ade_data, is_test, is_label)}
files = {'train': (train, ade_train, False, True), 'dev': (devel, ade_devel, False, True),
'test': (test, None, True, False), 'test_labels': (test, None, True, True)}
re_generator(files, args)
if __name__ == '__main__':
main()