|
a |
|
b/utils.py |
|
|
1 |
from typing import List, Tuple, Callable, Dict, Union, Iterable |
|
|
2 |
from annotations import Entity, Relation |
|
|
3 |
from ehr import HealthRecord |
|
|
4 |
|
|
|
5 |
import os |
|
|
6 |
import sys |
|
|
7 |
from pickle import dump, load |
|
|
8 |
from IPython.core.display import display, HTML |
|
|
9 |
import json |
|
|
10 |
from collections import defaultdict |
|
|
11 |
import pandas as pd |
|
|
12 |
import networkx as nx |
|
|
13 |
import math |
|
|
14 |
import matplotlib.pyplot as plt |
|
|
15 |
from io import BytesIO |
|
|
16 |
import base64 |
|
|
17 |
import matplotlib |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
TPL_HTML = """<span style = "background-color: {color}; border-radius: 5px;"> {content} </span>""" |
|
|
21 |
|
|
|
22 |
TPL_HTML_HOVER = """<span style = "background-color: {color}; border-radius: 5px;" class="{grp}"> {content} <span style = "background: {color}">{ent_type}</span></span>""" |
|
|
23 |
|
|
|
24 |
COLORS = {"Drug": "#aa9cfc", "Strength": "#ff9561", |
|
|
25 |
"Form": "#7aecec", "Frequency": "#9cc9cc", |
|
|
26 |
"Route": "#ffeb80", "Dosage": "#bfe1d9", |
|
|
27 |
"Reason": "#e4e7d2", "ADE": "#ff8197", |
|
|
28 |
"Duration": "#97c4f5"} |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
def add_ent_group(entities: Union[Dict[str, Entity], List[Entity]], |
|
|
32 |
relations: Union[Dict[str, Relation], List[Relation]]) -> List[Entity]: |
|
|
33 |
""" |
|
|
34 |
Adds relation group to Entity objects. |
|
|
35 |
|
|
|
36 |
Parameters |
|
|
37 |
---------- |
|
|
38 |
entities : Union[Dict[str, Entity], List[Entity]] |
|
|
39 |
Entities |
|
|
40 |
|
|
|
41 |
relations : Union[Dict[str, Relation], List[Relation]]) |
|
|
42 |
Relations |
|
|
43 |
|
|
|
44 |
Returns |
|
|
45 |
------- |
|
|
46 |
List[Entity] |
|
|
47 |
List of Entities with group information added. |
|
|
48 |
""" |
|
|
49 |
|
|
|
50 |
# Convert entities to a dictionary if not |
|
|
51 |
if not isinstance(entities, dict): |
|
|
52 |
ent_dict = {} |
|
|
53 |
for ent in entities: |
|
|
54 |
ent_dict[ent.ann_id] = ent |
|
|
55 |
entities = ent_dict |
|
|
56 |
|
|
|
57 |
# Add group information |
|
|
58 |
for rel in relations: |
|
|
59 |
entities[rel.arg1.ann_id].relation_group += "group-" + rel.ann_id + " " |
|
|
60 |
entities[rel.arg2.ann_id].relation_group += "group-" + rel.ann_id + " " |
|
|
61 |
|
|
|
62 |
return list(entities.values()) |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
# noinspection PyTypeChecker |
|
|
66 |
def display_ehr(text: str, |
|
|
67 |
entities: Union[Dict[str, Entity], List[Entity]], |
|
|
68 |
relations: Union[Dict[str, Relation], List[Relation]] = None, |
|
|
69 |
return_html: bool = False) -> Union[None, str]: |
|
|
70 |
""" |
|
|
71 |
Highlights EHR records with colors and displays |
|
|
72 |
them as HTML. Ideal for working with Jupyter Notebooks |
|
|
73 |
|
|
|
74 |
Parameters |
|
|
75 |
---------- |
|
|
76 |
text : str |
|
|
77 |
EHR record to render |
|
|
78 |
|
|
|
79 |
entities : Union[Dict[str, Entity], List[Entity]] |
|
|
80 |
A list of Entity objects |
|
|
81 |
|
|
|
82 |
relations : Union[Dict[str, Relation], List[Relation]] |
|
|
83 |
A list of relations. If provided, entities should be a dictionary. |
|
|
84 |
|
|
|
85 |
return_html : bool |
|
|
86 |
Indicator for returning HTML or printing the tagged EHR. |
|
|
87 |
The default is False. |
|
|
88 |
|
|
|
89 |
Returns |
|
|
90 |
------- |
|
|
91 |
Union[None, str] |
|
|
92 |
If return_html is true, returns html strings |
|
|
93 |
otherwise displays HTML. |
|
|
94 |
|
|
|
95 |
""" |
|
|
96 |
if relations is not None: |
|
|
97 |
entities = add_ent_group(entities, relations) |
|
|
98 |
|
|
|
99 |
if isinstance(entities, dict): |
|
|
100 |
entities = list(entities.values()) |
|
|
101 |
|
|
|
102 |
# Sort entity by starting range |
|
|
103 |
entities.sort(key=lambda x: x.range[0]) |
|
|
104 |
|
|
|
105 |
# Final text to render |
|
|
106 |
render_text = "" |
|
|
107 |
start_idx = 0 |
|
|
108 |
|
|
|
109 |
# Display legend |
|
|
110 |
if not return_html: |
|
|
111 |
for ent, col in COLORS.items(): |
|
|
112 |
render_text += TPL_HTML.format(content=ent, color=col) |
|
|
113 |
render_text += " " * 5 |
|
|
114 |
|
|
|
115 |
render_text += '\n' |
|
|
116 |
render_text += '--' * 50 |
|
|
117 |
render_text += "\n\n" |
|
|
118 |
|
|
|
119 |
# Replace each character range with HTML span template |
|
|
120 |
for ent in entities: |
|
|
121 |
if start_idx > ent.range[0]: |
|
|
122 |
continue |
|
|
123 |
|
|
|
124 |
render_text += text[start_idx:ent.range[0]] |
|
|
125 |
|
|
|
126 |
if return_html: |
|
|
127 |
render_text += TPL_HTML_HOVER.format( |
|
|
128 |
content=text[ent.range[0]:ent.range[1]], |
|
|
129 |
color=COLORS[ent.name], |
|
|
130 |
grp=ent.relation_group, |
|
|
131 |
ent_type=ent.name) |
|
|
132 |
else: |
|
|
133 |
render_text += TPL_HTML.format( |
|
|
134 |
content=text[ent.range[0]:ent.range[1]], |
|
|
135 |
color=COLORS[ent.name]) |
|
|
136 |
|
|
|
137 |
start_idx = ent.range[1] |
|
|
138 |
|
|
|
139 |
render_text += text[start_idx:] |
|
|
140 |
render_text = render_text.replace("\n", "<br>") |
|
|
141 |
|
|
|
142 |
if return_html: |
|
|
143 |
return render_text |
|
|
144 |
else: |
|
|
145 |
display(HTML(render_text)) |
|
|
146 |
|
|
|
147 |
|
|
|
148 |
def display_knowledge_graph(long_relation_df: pd.DataFrame, num_col: int = 2, |
|
|
149 |
height: int = 8, width: int = 8, |
|
|
150 |
return_html: bool = False) -> Union[None, str]: |
|
|
151 |
""" |
|
|
152 |
Highlights EHR records with colors and displays |
|
|
153 |
them as HTML. Ideal for working with Jupyter Notebooks |
|
|
154 |
|
|
|
155 |
Parameters |
|
|
156 |
---------- |
|
|
157 |
long_relation_df: pd.DataFrame |
|
|
158 |
Relation dataframe in long format. Should have columns named: |
|
|
159 |
['drug_id', 'drug', 'arg', 'edge'] |
|
|
160 |
|
|
|
161 |
num_col: int |
|
|
162 |
Number of columns in the grid. Number of rows are automatically |
|
|
163 |
calculated based on this. The default is 2. |
|
|
164 |
|
|
|
165 |
height: int |
|
|
166 |
The height of a single graph in inches. The default is 6. |
|
|
167 |
|
|
|
168 |
width: int |
|
|
169 |
The width of a single graph in inches. The default is 6. |
|
|
170 |
|
|
|
171 |
return_html: bool |
|
|
172 |
Indicator for returning the HTML img tag or displaying the plot. |
|
|
173 |
The default is False. |
|
|
174 |
|
|
|
175 |
Returns |
|
|
176 |
------- |
|
|
177 |
Union[None, str] |
|
|
178 |
If return_html is true, returns html string |
|
|
179 |
otherwise displays the plot. |
|
|
180 |
|
|
|
181 |
""" |
|
|
182 |
if return_html: |
|
|
183 |
matplotlib.use('Agg') |
|
|
184 |
|
|
|
185 |
drug_ids = sorted(list(pd.unique(long_relation_df['drug_id']))) |
|
|
186 |
num_row = math.ceil(len(drug_ids) / num_col) |
|
|
187 |
|
|
|
188 |
if num_row == 0: |
|
|
189 |
return None |
|
|
190 |
|
|
|
191 |
_ = plt.subplots(num_row, num_col, figsize=(num_col * width, height * num_row)) |
|
|
192 |
|
|
|
193 |
i = 0 |
|
|
194 |
for i, d in enumerate(drug_ids): |
|
|
195 |
sub_rel = long_relation_df[long_relation_df["drug_id"] == d] |
|
|
196 |
labels = sub_rel.set_index(['drug', 'arg'])['edge'].to_dict() |
|
|
197 |
|
|
|
198 |
plt.subplot(num_row, num_col, i + 1) |
|
|
199 |
|
|
|
200 |
# Knowledge graph for a single drug |
|
|
201 |
graph = nx.from_pandas_edgelist(sub_rel, "drug", "arg", edge_attr=True, create_using=nx.MultiDiGraph()) |
|
|
202 |
|
|
|
203 |
# Drug will always be the first in the graph |
|
|
204 |
color_map = ['#aa9cfc'] + ['skyblue'] * (len(graph.nodes) - 1) |
|
|
205 |
|
|
|
206 |
pos = nx.spring_layout(graph) |
|
|
207 |
|
|
|
208 |
# Draw the graph |
|
|
209 |
nx.draw(graph, with_labels=True, font_size=12, pos=pos, |
|
|
210 |
node_color=color_map, node_size=2000) |
|
|
211 |
|
|
|
212 |
# Draw edge labels |
|
|
213 |
nx.draw_networkx_edge_labels(graph, edge_labels=labels, |
|
|
214 |
pos=pos, font_color='red') |
|
|
215 |
|
|
|
216 |
# Remove axis for empty plots, if any |
|
|
217 |
i += 1 |
|
|
218 |
while i < num_row * num_col: |
|
|
219 |
plt.subplot(num_row, num_col, i + 1) |
|
|
220 |
plt.axis('off') |
|
|
221 |
i += 1 |
|
|
222 |
|
|
|
223 |
if not return_html: |
|
|
224 |
plt.show() |
|
|
225 |
return |
|
|
226 |
|
|
|
227 |
# Create an encoding for the image |
|
|
228 |
tmp_file = BytesIO() |
|
|
229 |
|
|
|
230 |
plt.tight_layout() |
|
|
231 |
plt.savefig(tmp_file, format="png") |
|
|
232 |
|
|
|
233 |
encoded = base64.b64encode(tmp_file.getvalue()).decode('utf-8') |
|
|
234 |
img_tag = '<img id="knowledge-graph" src=\'data:image/png;base64,{}\'>'.format(encoded) |
|
|
235 |
|
|
|
236 |
return img_tag |
|
|
237 |
|
|
|
238 |
|
|
|
239 |
def read_data(data_dir: str = 'data/', |
|
|
240 |
tokenizer: Callable[[str], List[str]] = None, |
|
|
241 |
is_bert_tokenizer: bool = True, |
|
|
242 |
verbose: int = 0) -> Tuple[List[HealthRecord], List[HealthRecord]]: |
|
|
243 |
""" |
|
|
244 |
Reads train and test data |
|
|
245 |
|
|
|
246 |
Parameters |
|
|
247 |
---------- |
|
|
248 |
data_dir : str, optional |
|
|
249 |
Directory where the data is located. |
|
|
250 |
It should have directories named 'train' and 'test' |
|
|
251 |
The default is 'data/'. |
|
|
252 |
|
|
|
253 |
tokenizer : Callable[[str], List[str]], optional |
|
|
254 |
The tokenizer function to use.. The default is None. |
|
|
255 |
|
|
|
256 |
is_bert_tokenizer : bool |
|
|
257 |
If the tokenizer is a BERT-based WordPiece tokenizer |
|
|
258 |
|
|
|
259 |
verbose : int, optional |
|
|
260 |
1 to print reading progress, 0 otherwise. The default is 0. |
|
|
261 |
|
|
|
262 |
Returns |
|
|
263 |
------- |
|
|
264 |
Tuple[List[HealthRecord], List[HealthRecord]] |
|
|
265 |
Train data, Test data. |
|
|
266 |
|
|
|
267 |
""" |
|
|
268 |
train_path = os.path.join(data_dir, "train") |
|
|
269 |
test_path = os.path.join(data_dir, "test") |
|
|
270 |
|
|
|
271 |
# Get all IDs for train and test data |
|
|
272 |
train_ids = list(set(['.'.join(fname.split('.')[:-1]) \ |
|
|
273 |
for fname in os.listdir(train_path) \ |
|
|
274 |
if not fname.startswith('.')])) |
|
|
275 |
|
|
|
276 |
test_ids = list(set(['.'.join(fname.split('.')[:-1]) \ |
|
|
277 |
for fname in os.listdir(test_path) \ |
|
|
278 |
if not fname.startswith('.')])) |
|
|
279 |
|
|
|
280 |
if verbose == 1: |
|
|
281 |
print("Train data:") |
|
|
282 |
|
|
|
283 |
train_data = [] |
|
|
284 |
for idx, fid in enumerate(train_ids): |
|
|
285 |
record = HealthRecord(fid, text_path=os.path.join(train_path, fid + '.txt'), |
|
|
286 |
ann_path=os.path.join(train_path, fid + '.ann'), |
|
|
287 |
tokenizer=tokenizer, |
|
|
288 |
is_bert_tokenizer=is_bert_tokenizer) |
|
|
289 |
train_data.append(record) |
|
|
290 |
if verbose == 1: |
|
|
291 |
draw_progress_bar(idx + 1, len(train_ids)) |
|
|
292 |
|
|
|
293 |
if verbose == 1: |
|
|
294 |
print('\n\nTest Data:') |
|
|
295 |
|
|
|
296 |
test_data = [] |
|
|
297 |
for idx, fid in enumerate(test_ids): |
|
|
298 |
record = HealthRecord(fid, text_path=os.path.join(test_path, fid + '.txt'), |
|
|
299 |
ann_path=os.path.join(test_path, fid + '.ann'), |
|
|
300 |
tokenizer=tokenizer, |
|
|
301 |
is_bert_tokenizer=is_bert_tokenizer) |
|
|
302 |
test_data.append(record) |
|
|
303 |
if verbose == 1: |
|
|
304 |
draw_progress_bar(idx + 1, len(test_ids)) |
|
|
305 |
|
|
|
306 |
return train_data, test_data |
|
|
307 |
|
|
|
308 |
|
|
|
309 |
def read_ade_data(ade_data_dir: str = 'ade_data/', |
|
|
310 |
verbose: int = 0) -> List[Dict]: |
|
|
311 |
""" |
|
|
312 |
Reads train and test ADE data |
|
|
313 |
|
|
|
314 |
Parameters |
|
|
315 |
---------- |
|
|
316 |
|
|
|
317 |
ade_data_dir : str, optional |
|
|
318 |
Directory where the ADE data is located. The default is 'ade_data/'. |
|
|
319 |
|
|
|
320 |
verbose : int, optional |
|
|
321 |
1 to print reading progress, 0 otherwise. The default is 0. |
|
|
322 |
|
|
|
323 |
Returns |
|
|
324 |
------- |
|
|
325 |
List[Dict] |
|
|
326 |
ADE data |
|
|
327 |
|
|
|
328 |
""" |
|
|
329 |
|
|
|
330 |
# Get all the IDs of ADE data |
|
|
331 |
ade_file_ids = sorted(list(set(['.'.join(fname.split('.')[:-1]) \ |
|
|
332 |
for fname in os.listdir(ade_data_dir) \ |
|
|
333 |
if not fname.startswith('.')]))) |
|
|
334 |
|
|
|
335 |
# Load ADE data |
|
|
336 |
ade_data = [] |
|
|
337 |
for idx, fid in enumerate(ade_file_ids): |
|
|
338 |
with open(ade_data_dir + fid + '.json') as f: |
|
|
339 |
data = json.load(f) |
|
|
340 |
ade_data.extend(data) |
|
|
341 |
|
|
|
342 |
ade_data = process_ade_files(ade_data) |
|
|
343 |
if verbose == 1: |
|
|
344 |
print("\n\nADE data: Done") |
|
|
345 |
|
|
|
346 |
return ade_data |
|
|
347 |
|
|
|
348 |
|
|
|
349 |
def process_ade_files(ade_data: List[dict]) -> List[dict]: |
|
|
350 |
""" |
|
|
351 |
Extracts tokens and creates Entity and Relation objects |
|
|
352 |
from raw json data. |
|
|
353 |
|
|
|
354 |
Parameters |
|
|
355 |
---------- |
|
|
356 |
ade_data : List[dict] |
|
|
357 |
Raw json data. |
|
|
358 |
|
|
|
359 |
Returns |
|
|
360 |
------- |
|
|
361 |
List[dict] |
|
|
362 |
Tokens, entities and relations. |
|
|
363 |
|
|
|
364 |
""" |
|
|
365 |
ade_records = [] |
|
|
366 |
|
|
|
367 |
for ade in ade_data: |
|
|
368 |
entities = {} |
|
|
369 |
relations = {} |
|
|
370 |
relation_backlog = [] |
|
|
371 |
|
|
|
372 |
# Tokens |
|
|
373 |
tokens = ade['tokens'] |
|
|
374 |
|
|
|
375 |
# Entities |
|
|
376 |
e_num = 1 |
|
|
377 |
for ent in ade['entities']: |
|
|
378 |
ent_id = 'T' + "%s" % e_num |
|
|
379 |
if ent['type'] == 'Adverse-Effect': |
|
|
380 |
ent['type'] = 'ADE' |
|
|
381 |
|
|
|
382 |
ent_obj = Entity(entity_id=ent_id, |
|
|
383 |
entity_type=ent['type']) |
|
|
384 |
|
|
|
385 |
r = [ent['start'], ent['end'] - 1] |
|
|
386 |
r = list(map(int, r)) |
|
|
387 |
ent_obj.set_range(r) |
|
|
388 |
|
|
|
389 |
text = '' |
|
|
390 |
for token_ent in ade['tokens'][ent['start']:ent['end']]: |
|
|
391 |
text += token_ent + ' ' |
|
|
392 |
ent_obj.set_text(text) |
|
|
393 |
|
|
|
394 |
entities[ent_id] = ent_obj |
|
|
395 |
e_num += 1 |
|
|
396 |
|
|
|
397 |
# Relations |
|
|
398 |
r_num = 1 |
|
|
399 |
for relation in ade['relations']: |
|
|
400 |
rel_id = 'R' + "%s" % r_num |
|
|
401 |
rel_details = 'ADE-Drug' |
|
|
402 |
entity1 = "T" + str(relation['head'] + 1) |
|
|
403 |
entity2 = "T" + str(relation['tail'] + 1) |
|
|
404 |
|
|
|
405 |
if entity1 in entities and entity2 in entities: |
|
|
406 |
rel = Relation(relation_id=rel_id, |
|
|
407 |
relation_type=rel_details, |
|
|
408 |
arg1=entities[entity1], |
|
|
409 |
arg2=entities[entity2]) |
|
|
410 |
|
|
|
411 |
relations[rel_id] = rel |
|
|
412 |
|
|
|
413 |
else: |
|
|
414 |
relation_backlog.append([rel_id, rel_details, |
|
|
415 |
entity1, entity2]) |
|
|
416 |
r_num += 1 |
|
|
417 |
|
|
|
418 |
ade_records.append({"tokens": tokens, "entities": entities, "relations": relations}) |
|
|
419 |
return ade_records |
|
|
420 |
|
|
|
421 |
|
|
|
422 |
def map_entities(entities: Union[Dict[str, Entity], List[Entity]], |
|
|
423 |
actual_relations: Union[Dict[str, Relation], List[Relation]] = None) \ |
|
|
424 |
-> Union[List[Tuple[Relation, None]], List[Tuple[Relation, int]]]: |
|
|
425 |
""" |
|
|
426 |
Maps each drug entity to all other non-drug entities in the list. |
|
|
427 |
|
|
|
428 |
Parameters |
|
|
429 |
---------- |
|
|
430 |
entities : List[Entity] |
|
|
431 |
List of entities. |
|
|
432 |
|
|
|
433 |
actual_relations : List[Relation], optional |
|
|
434 |
List of actual relations (for training data). |
|
|
435 |
The default is None. |
|
|
436 |
|
|
|
437 |
Returns |
|
|
438 |
------- |
|
|
439 |
Union[List[Relations], List[Tuple[Relation, int]]] |
|
|
440 |
List of mapped relations. If actual relations are specified, |
|
|
441 |
also returns a flag to indicate if it is an actual relation. |
|
|
442 |
|
|
|
443 |
""" |
|
|
444 |
|
|
|
445 |
drug_entities = [] |
|
|
446 |
non_drug_entities = [] |
|
|
447 |
|
|
|
448 |
if isinstance(entities, dict): |
|
|
449 |
entities = list(entities.values()) |
|
|
450 |
|
|
|
451 |
if actual_relations and isinstance(actual_relations, dict): |
|
|
452 |
actual_relations = list(actual_relations.values()) |
|
|
453 |
|
|
|
454 |
# Splitting each entity to drug and non-drug entities |
|
|
455 |
for ent in entities: |
|
|
456 |
if ent.name.lower() == "drug": |
|
|
457 |
drug_entities.append(ent) |
|
|
458 |
else: |
|
|
459 |
non_drug_entities.append(ent) |
|
|
460 |
|
|
|
461 |
relations = [] |
|
|
462 |
i = 1 |
|
|
463 |
|
|
|
464 |
# Mapping each drug entity to each non-drug entity |
|
|
465 |
for ent1 in drug_entities: |
|
|
466 |
for ent2 in non_drug_entities: |
|
|
467 |
rel = Relation(relation_id="R%d" % i, |
|
|
468 |
relation_type=ent2.name + "-Drug", |
|
|
469 |
arg1=ent1, arg2=ent2) |
|
|
470 |
relations.append(rel) |
|
|
471 |
i += 1 |
|
|
472 |
|
|
|
473 |
if actual_relations is None: |
|
|
474 |
return list(zip(relations, [None] * len(relations))) |
|
|
475 |
|
|
|
476 |
# Maps each relation type to list of actual relations |
|
|
477 |
actual_rel_dict = defaultdict(list) |
|
|
478 |
for rel in actual_relations: |
|
|
479 |
actual_rel_dict[rel.name].append(rel) |
|
|
480 |
|
|
|
481 |
relation_flags = [] |
|
|
482 |
flag = 0 |
|
|
483 |
|
|
|
484 |
# Computes actual relation flags |
|
|
485 |
for rel in relations: |
|
|
486 |
for act_rel in actual_rel_dict[rel.name]: |
|
|
487 |
if rel == act_rel: |
|
|
488 |
flag = 1 |
|
|
489 |
break |
|
|
490 |
|
|
|
491 |
relation_flags.append(flag) |
|
|
492 |
flag = 0 |
|
|
493 |
|
|
|
494 |
return list(zip(relations, relation_flags)) |
|
|
495 |
|
|
|
496 |
|
|
|
497 |
def get_long_relation_table(relations: Iterable[Relation]) -> pd.DataFrame: |
|
|
498 |
""" |
|
|
499 |
Returns the relations in a long table format with the columns |
|
|
500 |
['drug_id', 'drug', 'arg', 'edge'] where arg is entity related |
|
|
501 |
to drug and edge is the entity type. |
|
|
502 |
|
|
|
503 |
Parameters |
|
|
504 |
---------- |
|
|
505 |
relations : Iterable[Relation] |
|
|
506 |
A list of relations. |
|
|
507 |
|
|
|
508 |
Returns |
|
|
509 |
------- |
|
|
510 |
pd.DataFrame |
|
|
511 |
All the relations in a long tabular format. |
|
|
512 |
|
|
|
513 |
""" |
|
|
514 |
rel_dict = {'drug_id': [], 'drug': [], 'arg': [], 'edge': []} |
|
|
515 |
|
|
|
516 |
for rel in relations: |
|
|
517 |
if rel.arg1.name == "Drug": |
|
|
518 |
rel_dict['drug_id'].append(rel.arg1.ann_id) |
|
|
519 |
rel_dict['drug'].append(rel.arg1.ann_text) |
|
|
520 |
rel_dict['arg'].append(rel.arg2.ann_text) |
|
|
521 |
|
|
|
522 |
else: |
|
|
523 |
rel_dict['drug_id'].append(rel.arg2.ann_id) |
|
|
524 |
rel_dict['drug'].append(rel.arg2.ann_text) |
|
|
525 |
rel_dict['arg'].append(rel.arg1.ann_text) |
|
|
526 |
|
|
|
527 |
rel_dict['edge'].append(rel.name.split('-')[0]) |
|
|
528 |
|
|
|
529 |
rel_df = pd.DataFrame(rel_dict) |
|
|
530 |
return rel_df |
|
|
531 |
|
|
|
532 |
|
|
|
533 |
def get_relation_table(relations: Union[pd.DataFrame, Iterable[Relation]], |
|
|
534 |
is_long_df: bool = True) -> pd.DataFrame: |
|
|
535 |
""" |
|
|
536 |
Returns the relations in a wide table format. |
|
|
537 |
|
|
|
538 |
Parameters |
|
|
539 |
---------- |
|
|
540 |
relations : Union[pd.DataFrame, Iterable[Relation]] |
|
|
541 |
Either a list of relations, or relations table in long format. |
|
|
542 |
|
|
|
543 |
is_long_df : bool |
|
|
544 |
Indicator for relations parameter. True indicates the input is |
|
|
545 |
a long dataframe. False indicates it is a list of relations. |
|
|
546 |
|
|
|
547 |
Returns |
|
|
548 |
------- |
|
|
549 |
str |
|
|
550 |
HTML blob of all the relations in a tabular format. |
|
|
551 |
|
|
|
552 |
""" |
|
|
553 |
relations = relations.drop_duplicates() |
|
|
554 |
|
|
|
555 |
if not is_long_df: |
|
|
556 |
relations = get_long_relation_table(relations) |
|
|
557 |
|
|
|
558 |
relations = relations.rename(columns={"drug_id": "Drug ID", "drug": "Drug", |
|
|
559 |
"edge": "Entity Type", "arg": "Entity Text"}) |
|
|
560 |
|
|
|
561 |
relation_df = ( |
|
|
562 |
relations |
|
|
563 |
.groupby(["Drug ID", "Drug", "Entity Type"])["Entity Text"] |
|
|
564 |
.apply(lambda x: list(x)) |
|
|
565 |
.reset_index(name="Entity Text") |
|
|
566 |
.set_index(["Drug ID", "Drug", "Entity Type"]) |
|
|
567 |
) |
|
|
568 |
|
|
|
569 |
relation_df["Entity Text"] = relation_df["Entity Text"].apply(lambda x: "\n".join(x)) |
|
|
570 |
|
|
|
571 |
empty_header = " <tr style=\"text-align: right;\">\n <th></th>\n <th></th>\n <th></th>\n <th>Entity Text</th>\n </tr>\n" |
|
|
572 |
empty_colname = "<th></th>" |
|
|
573 |
|
|
|
574 |
relation_html = ( |
|
|
575 |
relation_df |
|
|
576 |
.to_html(classes=['table'], border=0) |
|
|
577 |
.replace("\\n", "<br>") |
|
|
578 |
.replace(empty_header, "") |
|
|
579 |
.replace(empty_colname, "<th>Entity Text</th>") |
|
|
580 |
) |
|
|
581 |
return relation_html |
|
|
582 |
|
|
|
583 |
|
|
|
584 |
def draw_progress_bar(current, total, string='', bar_len=20): |
|
|
585 |
""" |
|
|
586 |
Draws a progress bar, like [====> ] 40% |
|
|
587 |
|
|
|
588 |
Parameters |
|
|
589 |
------------ |
|
|
590 |
current: int/float |
|
|
591 |
Current progress |
|
|
592 |
|
|
|
593 |
total: int/float |
|
|
594 |
The total from which the current progress is made |
|
|
595 |
|
|
|
596 |
string: str |
|
|
597 |
Additional details to write along with progress |
|
|
598 |
|
|
|
599 |
bar_len: int |
|
|
600 |
Length of progress bar |
|
|
601 |
""" |
|
|
602 |
percent = current / total |
|
|
603 |
arrow = ">" |
|
|
604 |
if percent == 1: |
|
|
605 |
arrow = "" |
|
|
606 |
# Carriage return, returns to the beginning of line to overwrite |
|
|
607 |
sys.stdout.write("\r") |
|
|
608 |
sys.stdout.write("Progress: [{:<{}}] {}/{}".format("=" * int(bar_len * percent) + arrow, |
|
|
609 |
bar_len, current, total) + string) |
|
|
610 |
sys.stdout.flush() |
|
|
611 |
|
|
|
612 |
|
|
|
613 |
def is_whitespace(char): |
|
|
614 |
""" |
|
|
615 |
Checks if the character is a whitespace |
|
|
616 |
|
|
|
617 |
Parameters |
|
|
618 |
-------------- |
|
|
619 |
char: str |
|
|
620 |
A single character string to check |
|
|
621 |
""" |
|
|
622 |
# ord() returns unicode and 0x202F is the unicode for whitespace |
|
|
623 |
if char == " " or char == "\t" or char == "\r" or char == "\n" or ord(char) == 0x202F: |
|
|
624 |
return True |
|
|
625 |
else: |
|
|
626 |
return False |
|
|
627 |
|
|
|
628 |
|
|
|
629 |
def is_punct(char): |
|
|
630 |
""" |
|
|
631 |
Checks if the character is a punctuation |
|
|
632 |
|
|
|
633 |
Parameters |
|
|
634 |
-------------- |
|
|
635 |
char: str |
|
|
636 |
A single character string to check |
|
|
637 |
""" |
|
|
638 |
if char == "." or char == "," or char == "!" or char == "?" or char == '\\': |
|
|
639 |
return True |
|
|
640 |
else: |
|
|
641 |
return False |
|
|
642 |
|
|
|
643 |
|
|
|
644 |
def save_pickle(file, variable): |
|
|
645 |
""" |
|
|
646 |
Saves variable as a pickle file |
|
|
647 |
|
|
|
648 |
Parameters |
|
|
649 |
----------- |
|
|
650 |
file: str |
|
|
651 |
File name/path in which the variable is to be stored |
|
|
652 |
|
|
|
653 |
variable: object |
|
|
654 |
The variable to be stored in a file |
|
|
655 |
""" |
|
|
656 |
if file.split('.')[-1] != "pkl": |
|
|
657 |
file += ".pkl" |
|
|
658 |
|
|
|
659 |
with open(file, 'wb') as f: |
|
|
660 |
dump(variable, f) |
|
|
661 |
print("Variable successfully saved in " + file) |
|
|
662 |
|
|
|
663 |
|
|
|
664 |
def open_pickle(file): |
|
|
665 |
""" |
|
|
666 |
Returns the variable after reading it from a pickle file |
|
|
667 |
|
|
|
668 |
Parameters |
|
|
669 |
----------- |
|
|
670 |
file: str |
|
|
671 |
File name/path from which variable is to be loaded |
|
|
672 |
""" |
|
|
673 |
if file.split('.')[-1] != "pkl": |
|
|
674 |
file += ".pkl" |
|
|
675 |
|
|
|
676 |
with open(file, 'rb') as f: |
|
|
677 |
return load(f) |