import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import f1_score, precision_score, recall_score
from torch import nn
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed
)
from utils_ner import NerDataset, Split, get_labels
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
data_dir: str = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
)
labels: Optional[str] = field(
default=None,
metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."},
)
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
# Prepare CONLL-2003 task
labels = get_labels(data_args.labels)
label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
num_labels = len(labels)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
id2label=label_map,
label2id={label: i for i, label in enumerate(labels)},
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast,
)
model = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
# Get datasets
train_dataset = (
NerDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
labels=labels,
model_type=config.model_type,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.train,
)
if training_args.do_train
else None
)
eval_dataset = (
NerDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
labels=labels,
model_type=config.model_type,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.dev,
)
if training_args.do_eval
else None
)
def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) \
-> Tuple[List[List[str]], List[List[str]]]:
preds = np.argmax(predictions, axis=2)
batch_size, seq_len = preds.shape
out_label_list = [[] for _ in range(batch_size)]
preds_list = [[] for _ in range(batch_size)]
for i in range(batch_size):
for j in range(seq_len):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]])
preds_list[i].append(label_map[preds[i][j]])
return preds_list, out_label_list
def compute_metrics(p: EvalPrediction) -> Dict:
preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)
return {
"precision": precision_score(out_label_list, preds_list),
"recall": recall_score(out_label_list, preds_list),
"f1": f1_score(out_label_list, preds_list),
}
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
result = trainer.evaluate()
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
if trainer.is_world_master():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(result)
# Predict
if training_args.do_predict:
test_dataset = NerDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
labels=labels,
model_type=config.model_type,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.test,
)
predictions, label_ids, metrics = trainer.predict(test_dataset)
logger.info("Predictions shape: " + str(predictions.shape))
preds_list, _ = align_predictions(predictions, label_ids)
# Save predictions
output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
if trainer.is_world_master():
with open(output_test_results_file, "w") as writer:
logger.info("***** Test results *****")
for key, value in metrics.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
prev_pred = ""
if trainer.is_world_master():
with open(output_test_predictions_file, "w") as writer:
with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
example_id = 0
for line in f:
if line.startswith("##"):
if prev_pred != "O":
prev_pred = "I-" + prev_pred.split('-')[-1]
output_line = line.split()[0] + " " + prev_pred + "\n"
writer.write(output_line)
elif line.startswith("-DOCSTART-") or line == "" or line == "\n":
writer.write(line)
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
prev_pred = preds_list[example_id].pop(0)
output_line = line.split()[0] + " " + prev_pred + "\n"
writer.write(output_line)
else:
logger.warning(
"Example %d, Example: %s" % (example_id, line)
)
return results
if __name__ == "__main__":
main()