from model.data_utils import CoNLLDataset
from model.config import Config
from model.ner_model import NERModel
from model.ner_learner import NERLearner
# from model.ent_model import EntModel
# from model.ent_learner import EntLearner
def main():
# create instance of config
config = Config()
if config.use_elmo: config.processing_word = None
#build model
model = NERModel(config)
# create datasets
dev = CoNLLDataset(config.filename_dev, config.processing_word,
config.processing_tag, config.max_iter, config.use_crf)
train = CoNLLDataset(config.filename_train, config.processing_word,
config.processing_tag, config.max_iter, config.use_crf)
learn = NERLearner(config, model)
learn.fit(train, dev)
if __name__ == "__main__":
main()