[1de6ed]: / bilstm_crf_ner / test.py

Download this file

54 lines (40 with data), 1.4 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
""" Command Line Usage
Args:
eval: Evaluate F1 Score and Accuracy on test set
pred: Predict sentence.
(optional): Sentence to predict on. If none given, predicts on "Peter Johnson lives in Los Angeles"
Example:
> python test.py eval pred "Obama is from Hawaii"
"""
from model.data_utils import CoNLLDataset
from model.config import Config
from model.ner_model import NERModel
from model.ner_learner import NERLearner
import sys
def main():
# create instance of config
config = Config()
if config.use_elmo: config.processing_word = None
#build model
model = NERModel(config)
learn = NERLearner(config, model)
learn.load()
if len(sys.argv) == 1:
print("No arguments given. Running full test")
sys.argv.append("eval")
# sys.argv.append("pred")
if sys.argv[1] == "eval":
# create datasets
test = CoNLLDataset(config.filename_test, config.processing_word,
config.processing_tag, config.max_iter)
learn.evaluate(test)
# if sys.argv[1] == "pred" or sys.argv[2] == "pred":
# try:
# sent = (sys.argv[2] if sys.argv[1] == "pred" else sys.argv[3])
# except IndexError:
# sent = "Peter Johnson lives in Los Angeles."
# print("Predicting sentence: ", sent)
# pred = learn.predict(sent)
# print(pred)
if __name__ == "__main__":
main()