[cad161]: / tests / processing / test_backends.py

Download this file

578 lines (497 with data), 16.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
import random
import time
from itertools import chain
from pathlib import Path
from typing import Any, Dict, List, Sequence
import pandas as pd
import pytest
from confit import validate_arguments
from spacy.tokens import Doc
import edsnlp.data
import edsnlp.processing
from edsnlp.data.converters import get_current_tokenizer
from edsnlp.processing.multiprocessing import get_dispatch_schedule
try:
import torch.nn
except ImportError:
torch = None
docs = [
{
"note_id": 1234,
"note_text": "This is a test.",
"entities": [
{
"note_nlp_id": 0,
"start_char": 0,
"end_char": 4,
"lexical_variant": "This",
"note_nlp_source_value": "test",
"negation": True,
},
{
"note_nlp_id": 1,
"start_char": 5,
"end_char": 7,
"lexical_variant": "is",
"note_nlp_source_value": "test",
},
],
},
{
"note_id": 0,
"note_text": "This is an empty document.",
"entities": None,
},
]
@pytest.mark.parametrize(
"reader_format,reader_converter,backend,writer_format,writer_converter,worker_io",
[
("pandas", "omop", "simple", "pandas", "omop", False),
("pandas", "omop", "multiprocessing", "pandas", "omop", False),
("pandas", "omop", "spark", "pandas", "omop", False),
("parquet", "omop", "simple", "parquet", "omop", False),
("parquet", "omop", "multiprocessing", "parquet", "omop", False),
("parquet", "omop", "spark", "parquet", "omop", False),
("parquet", "omop", "multiprocessing", "parquet", "omop", True),
("parquet", "omop", "spark", "parquet", "omop", True),
("parquet", "omop", "multiprocessing", "iterable", None, False),
],
)
def test_end_to_end(
reader_format,
reader_converter,
backend,
writer_format,
writer_converter,
worker_io,
nlp_eds,
tmp_path,
):
nlp = nlp_eds
rsrc = Path(__file__).parent.parent.resolve() / "resources"
if reader_format == "pandas":
pandas_dataframe = pd.DataFrame(docs)
data = edsnlp.data.from_pandas(
pandas_dataframe,
converter=reader_converter,
)
elif reader_format == "parquet":
data = edsnlp.data.read_parquet(
rsrc / "docs.parquet",
converter=reader_converter,
read_in_worker=worker_io,
)
else:
raise ValueError(reader_format)
data = data.map_batches(lambda x: sorted(x, key=len), batch_size=2)
data = data.map_pipeline(nlp)
data = data.set_processing(
backend=backend,
show_progress=True,
batch_by="words",
batch_size=2,
)
if writer_format == "pandas":
data.to_pandas(converter=writer_converter)
elif writer_format == "parquet":
data.write_parquet(
tmp_path,
converter=writer_converter,
write_in_worker=worker_io,
)
elif writer_format == "iterable":
list(data)
else:
raise ValueError(writer_format)
def test_multiprocessing_backend(frozen_ml_nlp):
texts = ["Ceci est un exemple", "Ceci est un autre exemple"]
docs = list(
frozen_ml_nlp.pipe(
texts * 20,
batch_size=2,
).set_processing(
backend="multiprocessing",
num_cpu_workers=-1,
sort_chunks=True,
chunk_size=2,
batch_by="words",
show_progress=True,
)
)
assert len(docs) == 40
def error_pipe(doc: Doc):
if doc._.note_id == "text-3":
raise ValueError("error")
return doc
@pytest.mark.parametrize(
"backend,deterministic",
[
("simple", True),
("multiprocessing", True),
("multiprocessing", False),
("spark", True),
],
)
def test_multiprocessing_gpu_stub_backend(frozen_ml_nlp, backend, deterministic):
text1 = "Ceci est un exemple"
text2 = "Ceci est un autre exemple"
stream = frozen_ml_nlp.pipe(
chain.from_iterable(
[
text1,
text2,
]
for i in range(2)
),
)
if backend == "simple":
pass
elif backend == "multiprocessing":
stream = stream.set_processing(
batch_size=2,
num_gpu_workers=1,
num_cpu_workers=1,
gpu_worker_devices=["cpu"],
deterministic=deterministic,
)
elif backend == "spark":
stream = stream.set_processing(backend="spark")
list(stream)
def test_multiprocessing_gpu_stub_multi_cpu_deterministic_backend(frozen_ml_nlp):
text1 = "Exemple"
text2 = "Ceci est un autre exemple"
text3 = "Ceci est un très long exemple ! Regardez tous ces mots !"
texts = [text1, text2, text3] * 100
random.Random(42).shuffle(texts)
stream = frozen_ml_nlp.pipe(iter(texts))
stream = stream.set_processing(
batch_size="15 words",
num_gpu_workers=1,
num_cpu_workers=2,
deterministic=True,
# show_progress=True,
# just to test in gpu-less environments
gpu_worker_devices=["cpu"],
)
list(stream)
@pytest.mark.parametrize("wait", [True, False])
def test_multiprocessing_gpu_stub_wait(frozen_ml_nlp, wait):
text1 = "Ceci est un exemple"
text2 = "Ceci est un autre exemple"
it = iter(
frozen_ml_nlp.pipe(
chain.from_iterable(
[
text1,
text2,
]
for i in range(2)
),
).set_processing(
batch_size=2,
num_gpu_workers=1,
num_cpu_workers=1,
gpu_worker_devices=["cpu"],
)
)
if wait:
time.sleep(5)
list(it)
def simple_converter(obj):
tok = get_current_tokenizer()
doc = tok(obj["content"])
doc._.note_id = obj["id"]
return doc
def test_iterable_error():
class Gen:
def __iter__(self):
for i in range(5):
if i == 3:
raise ValueError("error")
yield {"content": f"text-{i}", "id": f"text-{i}"}
with pytest.raises(ValueError):
list(
edsnlp.data.from_iterable(Gen(), converter=simple_converter).set_processing(
num_cpu_workers=2
)
)
def test_multiprocessing_rb_error(ml_nlp):
text1 = "Ceci est un exemple"
text2 = "Ceci est un autre exemple"
ml_nlp.add_pipe(error_pipe, name="error", after="sentences")
with pytest.raises(ValueError):
docs = edsnlp.data.from_iterable(
chain.from_iterable(
[
{"content": text1, "id": f"text-{i}"},
{"content": text2, "id": f"other-text-{i}"},
]
for i in range(5)
),
converter=simple_converter,
).map(lambda x: time.sleep(0.2) or x)
docs = ml_nlp.pipe(
docs,
n_process=2,
batch_size=2,
)
list(docs)
if torch is not None:
from edsnlp.core.torch_component import TorchComponent
class DeepLearningError(TorchComponent):
def __init__(self, *args, **kwargs):
super().__init__()
def preprocess(self, doc):
return {"num_words": len(doc), "doc_id": doc._.note_id}
def collate(self, batch):
return {
"num_words": torch.tensor(batch["num_words"]),
"doc_id": batch["doc_id"],
}
def forward(self, batch):
if "text-1" in batch["doc_id"]:
raise RuntimeError("Deep learning error")
return {}
@pytest.mark.skipif(torch is None, reason="torch not installed")
def test_multiprocessing_ml_error(ml_nlp):
text1 = "Ceci est un exemple"
text2 = "Ceci est un autre exemple"
ml_nlp.add_pipe(
DeepLearningError(pipeline=ml_nlp),
name="error",
after="sentences",
)
with pytest.raises(RuntimeError) as e:
docs = edsnlp.data.from_iterable(
chain.from_iterable(
[
{"content": text1, "id": f"text-{i}"},
{"content": text2, "id": f"other-text-{i}"},
]
for i in range(5)
),
converter=simple_converter,
)
docs = ml_nlp.pipe(docs)
docs = docs.set_processing(
batch_size=2,
num_gpu_workers=1,
num_cpu_workers=1,
gpu_worker_devices=["cpu"],
)
list(docs)
assert "Deep learning error" in str(e.value)
@pytest.mark.parametrize(
"backend",
["simple", "multiprocessing", "spark"],
)
def test_generator(backend):
items = ["abc", "def", "ghij"]
items = edsnlp.data.from_iterable(items)
def gen(x):
for char in x:
yield char
items = items.map(gen).set_processing(backend=backend, num_cpu_workers=2)
# output from workers will be read in a round-robin fashion
# ie zip(
# ("a", "b", "c", "g", "h", "i", "j") # worker 1
# ("d", "e", "f") # worker 2
# )
assert set(items) == {"a", "d", "b", "e", "c", "f", "g", "h", "i", "j"}
@pytest.mark.parametrize("deterministic", [True, False])
def test_multiprocessing_sleep(deterministic):
def process(x):
if x % 2 == 0:
time.sleep(0.1)
return x
items = list(range(100))
items = edsnlp.data.from_iterable(items)
items = items.map(process)
items = items.set_processing(
backend="multiprocessing",
deterministic=deterministic,
num_cpu_workers=2,
)
items = list(items)
if deterministic:
assert items == list(range(100))
else:
assert items != list(range(100))
@pytest.mark.parametrize("num_cpu_workers", [0, 1, 2])
def test_deterministic_skip(num_cpu_workers):
def process_batch(x):
return [i for i in x if i < 10 or i % 2 == 0]
items = list(range(100))
items = edsnlp.data.from_iterable(items)
items = items.map_batches(process_batch)
items = items.set_processing(
deterministic=True,
num_cpu_workers=num_cpu_workers,
)
items = list(items)
assert items == [*range(0, 10), *range(10, 100, 2)]
@pytest.mark.parametrize(
"backend",
["simple", "multiprocesing"],
)
@pytest.mark.skipif(torch is None, reason="torch not installed")
def test_backend_cache(backend):
import torch
from edsnlp.core.torch_component import (
BatchInput,
BatchOutput,
TorchComponent,
_caches,
)
@validate_arguments
class InnerComponent(TorchComponent):
def __init__(self, nlp=None, *args, **kwargs):
super().__init__()
self.called_forward = False
def preprocess(self, doc):
return {"text": doc.text}
def collate(self, batch: Dict[str, Any]) -> BatchInput:
return {"sizes": torch.as_tensor([len(x) for x in batch["text"]])}
def forward(self, batch):
assert not self.called_forward
self.called_forward = True
return {"sizes": batch["sizes"] * 2}
@validate_arguments
class OuterComponent(TorchComponent):
def __init__(self, inner):
super().__init__()
self.inner = inner
def preprocess(self, doc):
return {"inner": self.inner.preprocess(doc)}
def collate(self, batch: Dict[str, Any]) -> BatchInput:
return {"inner": self.inner.collate(batch["inner"])}
def forward(self, batch: BatchInput) -> BatchOutput:
return {"inner": self.inner(batch["inner"])["sizes"].clone()}
def postprocess(
self,
docs: Sequence[Doc],
results: BatchOutput,
inputs: List[Dict[str, Any]],
) -> Sequence[Doc]:
return docs
nlp = edsnlp.blank("eds")
nlp.add_pipe(InnerComponent(), name="inner")
nlp.add_pipe(OuterComponent(nlp.pipes.inner), name="outer")
text1 = "Word"
text2 = "A phrase"
text3 = "This is a sentence"
text4 = "This is a longer document with many words."
stream = edsnlp.data.from_iterable([text1, text2, text3, text4])
stream = stream.map_pipeline(nlp)
if backend == "simple":
assert list(_caches) == []
list(stream.set_processing(batch_size=4))
assert list(_caches) == []
elif backend == "multiprocessing":
list(
stream.set_processing(
batch_size=2,
num_gpu_workers=2,
num_cpu_workers=1,
gpu_worker_devices=["cpu", "cpu"],
)
)
elif backend == "spark":
list(stream.set_processing(backend="spark", batch_size=4))
def test_task_dispatch_schedule():
fn = get_dispatch_schedule
assert fn(0, range(4), range(2)) == [0, 0]
assert fn(1, range(4), range(2)) == [1, 1]
assert fn(2, range(4), range(2)) == [0, 0]
assert fn(3, range(4), range(2)) == [1, 1]
assert fn(0, range(3), range(2)) == [0, 0]
assert fn(1, range(3), range(2)) == [1, 1]
assert fn(2, range(3), range(2)) == [0, 1]
assert fn(0, range(2), range(3)) == [0, 0, 2]
assert fn(1, range(2), range(3)) == [1, 1, 2]
assert fn(0, range(2), range(3)) == [0, 0, 2]
assert fn(1, range(2), range(3)) == [1, 1, 2]
assert fn(0, range(16), range(10)) == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
assert fn(1, range(16), range(10)) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
assert fn(2, range(16), range(10)) == [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
assert fn(3, range(16), range(10)) == [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
assert fn(4, range(16), range(10)) == [4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
assert fn(5, range(16), range(10)) == [5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
assert fn(6, range(16), range(10)) == [6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
assert fn(7, range(16), range(10)) == [7, 7, 7, 7, 7, 7, 7, 7, 7, 7]
assert fn(8, range(16), range(10)) == [8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
assert fn(9, range(16), range(10)) == [9, 9, 9, 9, 9, 9, 9, 9, 9, 9]
assert fn(10, range(16), range(10)) == [0, 0, 0, 0, 0, 0, 6, 6, 6, 6]
assert fn(11, range(16), range(10)) == [1, 1, 1, 1, 1, 1, 7, 7, 7, 7]
assert fn(12, range(16), range(10)) == [2, 2, 2, 2, 2, 2, 8, 8, 8, 8]
assert fn(13, range(16), range(10)) == [3, 3, 3, 3, 3, 3, 9, 9, 9, 9]
assert fn(14, range(16), range(10)) == [4, 4, 4, 4, 4, 4, 6, 7, 6, 7]
assert fn(15, range(16), range(10)) == [5, 5, 5, 5, 5, 5, 8, 9, 8, 9]
def test_multiprocessing_on_simple_iterable_in_main():
exec(
"""
import edsnlp.data
counter = 0
def complex_func(n):
global counter
counter += 1
return n * n
stream = edsnlp.data.from_iterable(range(20))
stream = stream.map(complex_func)
stream = stream.set_processing(num_cpu_workers=2)
res = list(stream)
""",
{"__MODULE__": "__main__"},
)
def test_multiprocessing_on_full_example_in_main():
exec(
"""
from spacy.tokens import Doc
import edsnlp
import edsnlp.pipes as eds
from edsnlp.data.converters import get_current_tokenizer
if not Doc.has_extension("note_text"):
Doc.set_extension("note_text", default=None)
if not Doc.has_extension("date"):
Doc.set_extension("date", default=None)
if not Doc.has_extension("person_id"):
Doc.set_extension("person_id", default=None)
def convert_row_to_doc(row):
if row["note_text"] is None:
row["note_text"] = ""
text = row["note_text"]
doc = get_current_tokenizer()(text)
doc._.note_id = row["note_id"]
return doc
def convert_doc_to_row(doc_):
note_id = doc_._.note_id
person_id = doc_._.person_id
note_text = doc_.text
result = []
for date in doc_.spans["dates"]:
result.append(
{
"note_id": note_id,
"person_id": person_id,
# "note_text" : note_text,
# "note_doc" : doc_,
"date": date._.date.datetime,
}
)
return result
nlp = edsnlp.blank("eds")
# nlp = eds_biomedic_aphp.load()
# nlp.add_pipe(eds.sections())
nlp.add_pipe(eds.dates())
nlp.add_pipe(eds.sentences())
data = edsnlp.data.from_iterable(
[{"note_text": "Test", "note_id": "test"}],
converter=convert_row_to_doc,
)
data = data.map_pipeline(nlp)
data_pd = data.set_processing(show_progress=True, num_cpu_workers=5).to_pandas(
converter=convert_doc_to_row
)
""",
{"__MODULE__": "__main__"},
)