[cad161]: / tests / pipelines / misc / test_quantities.py

Download this file

381 lines (298 with data), 10.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
from itertools import chain
import pytest
import spacy
from pytest import fixture, raises
from spacy.tokens.span import Span
from edsnlp.core import PipelineProtocol
from edsnlp.pipelines.misc.quantities import QuantitiesMatcher
text = (
"Le patient fait 1 m 50 kg. La tumeur fait 2.0cm x 3cm. \n"
"Une autre tumeur plus petite fait 2 par 1mm.\n"
"Les trois éléments font 8, 13 et 15dm.\n"
"""
Leucocytes ¦mm ¦ ¦4.2 ¦ ¦4.0-10.0
Hémoglobine ¦ ¦9.0 - ¦ g ¦13-14
Hémoglobine ¦ ¦9.0 - ¦ ¦ xxx
"""
)
@fixture
def blank_nlp():
model = spacy.blank("eds")
model.add_pipe("eds.normalizer")
model.add_pipe("eds.sentences")
model.add_pipe("eds.tables")
return model
@fixture
def matcher(blank_nlp):
matcher = QuantitiesMatcher(blank_nlp, extract_ranges=True, use_tables=True)
return matcher
def test_deprecated_pipe(blank_nlp: PipelineProtocol):
blank_nlp.add_pipe("matcher", config=dict(terms={"patient": "patient"}))
blank_nlp.add_pipe(
"eds.measurements",
)
doc = blank_nlp(text)
assert len(doc.ents) == 1
assert len(doc.spans["quantities"]) == 15
assert len(doc.spans["measurements"]) == 15
def test_deprecated_arg(blank_nlp: PipelineProtocol):
blank_nlp.add_pipe("matcher", config=dict(terms={"patient": "patient"}))
blank_nlp.add_pipe(
"eds.measurements", config=dict(measurements=["size", "weight", "bmi"])
)
doc = blank_nlp(text)
assert len(doc.ents) == 1
assert len(doc.spans["quantities"]) == 15
assert len(doc.spans["measurements"]) == 15
def test_default_factory(blank_nlp: PipelineProtocol):
blank_nlp.add_pipe("matcher", config=dict(terms={"patient": "patient"}))
blank_nlp.add_pipe(
"eds.quantities",
config={"quantities": ["size", "weight", "bmi"], "use_tables": True},
)
doc = blank_nlp(text)
assert len(doc.ents) == 1
assert len(doc.spans["quantities"]) == 15
def test_quantities_component(
blank_nlp: PipelineProtocol,
matcher: QuantitiesMatcher,
):
doc = blank_nlp(text)
with raises(KeyError):
doc.spans["quantities"]
doc = matcher(doc)
for span_key in ["quantities", "measurements"]:
m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13 = doc.spans[span_key]
assert str(m1._.value) == "1 m"
assert str(m2._.value) == "50 kg"
assert str(m3._.value) == "2.0 cm"
assert str(m4._.value) == "3 cm"
assert str(m5._.value) == "2 mm"
assert str(m6._.value) == "1 mm"
assert str(m7._.value) == "8 dm"
assert str(m8._.value) == "13 dm"
assert str(m9._.value) == "15 dm"
assert str(m10._.value) == "4.2 mm"
assert str(m11._.value) == "4.0-10.0 mm"
assert str(m12._.value) == "9.0 g"
assert str(m13._.value) == "13-14 g"
def test_quantities_component_scaling(
blank_nlp: PipelineProtocol,
matcher: QuantitiesMatcher,
):
doc = blank_nlp(text)
with raises(KeyError):
doc.spans["quantities"]
doc = matcher(doc)
m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13 = doc.spans["quantities"]
assert abs(m1._.value.cm - 100) < 1e-6
assert abs(m2._.value.mg - 50000000.0) < 1e-6
assert abs(m3._.value.mm - 20) < 1e-6
assert abs(m4._.value.mm - 30) < 1e-6
assert abs(m5._.value.cm - 0.2) < 1e-6
assert abs(m6._.value.cm - 0.1) < 1e-6
assert abs(m7._.value.dm - 8.0) < 1e-6
assert abs(m8._.value.m - 1.3) < 1e-6
assert abs(m9._.value.m - 1.5) < 1e-6
assert abs(m10._.value.mm - 4.2) < 1e-6
assert abs(m11._.value.mm[0] - 4.0) < 1e-6
assert abs(m11._.value.mm[1] - 10.0) < 1e-6
assert abs(m12._.value.g - 9) < 1e-6
assert abs(m13._.value.g[0] - 13.0) < 1e-6
assert abs(m13._.value.g[1] - 14.0) < 1e-6
def test_measure_label(
blank_nlp: PipelineProtocol,
matcher: QuantitiesMatcher,
):
doc = blank_nlp(text)
doc = matcher(doc)
m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13 = doc.spans["quantities"]
assert m1.label_ == "size"
assert m2.label_ == "weight"
assert m3.label_ == "size"
assert m4.label_ == "size"
assert m5.label_ == "size"
assert m6.label_ == "size"
assert m7.label_ == "size"
assert m8.label_ == "size"
assert m9.label_ == "size"
assert m10.label_ == "size"
assert m11.label_ == "size"
assert m12.label_ == "weight"
assert m13.label_ == "weight"
def test_quantities_all_input(
blank_nlp: PipelineProtocol,
matcher: QuantitiesMatcher,
):
all_text = "On mesure 13 mol/ml de ..." "On compte 16x10*9 ..."
blank_nlp.add_pipe(
"eds.quantities",
config={"quantities": "all", "extract_ranges": True},
)
doc = blank_nlp(all_text)
m1, m2 = doc.spans["quantities"]
assert str(m1._.value) == "13 mol_per_ml"
assert str(m2._.value) == "16 x10*9"
def test_measure_str(
blank_nlp: PipelineProtocol,
matcher: QuantitiesMatcher,
):
for text, res in [
("1m50", "1.5 m"),
("1,50cm", "1.5 cm"),
]:
doc = blank_nlp(text)
doc = matcher(doc)
assert str(doc.spans["quantities"][0]._.value) == res
def test_measure_repr(
blank_nlp: PipelineProtocol,
matcher: QuantitiesMatcher,
):
for text, res in [
(
"1m50",
"Quantity(1.5, 'm')",
),
(
"1,50cm",
"Quantity(1.5, 'cm')",
),
]:
doc = blank_nlp(text)
doc = matcher(doc)
assert repr(doc.spans["quantities"][0]._.value) == res
def test_compare(
blank_nlp: PipelineProtocol,
matcher: QuantitiesMatcher,
):
m1, m2 = "1m0", "120cm"
m1 = matcher(blank_nlp(m1)).spans["quantities"][0]
m2 = matcher(blank_nlp(m2)).spans["quantities"][0]
assert m1._.value <= m2._.value
assert m2._.value > m1._.value
m3 = "Entre deux et trois metres"
m4 = "De 2 à 3 metres"
m3 = matcher(blank_nlp(m3)).spans["quantities"][0]
m4 = matcher(blank_nlp(m4)).spans["quantities"][0]
assert str(m3._.value) == "2-3 m"
assert str(m4._.value) == "2-3 m"
assert m4._.value.cm == (200.0, 300.0)
assert m3._.value == m4._.value
assert m3._.value <= m4._.value
assert m3._.value >= m1._.value
assert max(list(chain(m1._.value, m2._.value, m3._.value, m4._.value))).cm == 300
def test_unitless(
blank_nlp: PipelineProtocol,
matcher: QuantitiesMatcher,
):
for text, res in [
("BMI: 24 .", "24 kg_per_m2"),
("Le patient mesure 1.5 ", "1.5 m"),
("Le patient mesure 152 ", "152 cm"),
("Le patient pèse 34 ", "34 kg"),
]:
doc = blank_nlp(text)
doc = matcher(doc)
assert str(doc.spans["quantities"][0]._.value) == res
def test_non_matches(
blank_nlp: PipelineProtocol,
matcher: QuantitiesMatcher,
):
for text in [
"On délivre à 10 g / h.",
"Le patient grandit de 10 cm par jour ",
"Truc 10cma truc",
"01.42.43.56.78 m",
]:
doc = blank_nlp(text)
doc = matcher(doc)
assert len(doc.spans["quantities"]) == 0
def test_numbers(
blank_nlp: PipelineProtocol,
matcher: QuantitiesMatcher,
):
for text, res in [
("deux m", "2 m"),
("2 m", "2 m"),
("⅛ m", "0.125 m"),
("0 m", "0 m"),
("55 @ 77777 cm", "77777 cm"),
]:
doc = blank_nlp(text)
doc = matcher(doc)
assert str(doc.spans["quantities"][0]._.value) == res
def test_ranges(
blank_nlp: PipelineProtocol,
matcher: QuantitiesMatcher,
):
for text, res, snippet in [
("Le patient fait entre 1 et 2m", "1-2 m", "entre 1 et 2m"),
("On mesure de 2 à 2.5 dl d'eau", "2-2.5 dl", "de 2 à 2.5 dl"),
]:
doc = blank_nlp(text)
doc = matcher(doc)
quantity = doc.spans["quantities"][0]
assert str(quantity._.value) == res
assert quantity.text == snippet
def test_merge_align(blank_nlp, matcher):
matcher.merge_mode = "align"
matcher.span_getter = {"candidates": True}
matcher.span_setter = {"ents": True}
doc = blank_nlp(text)
ent = Span(doc, 10, 15, label="size")
doc.spans["candidates"] = [ent]
doc = matcher(doc)
assert len(doc.ents) == 1
assert str(ent._.value) == "2.0 cm"
def test_merge_intersect(blank_nlp, matcher: QuantitiesMatcher):
matcher.merge_mode = "intersect"
matcher.span_setter = {**matcher.span_setter, "ents": True}
matcher.span_getter = {"lookup_zones": True}
doc = blank_nlp(text)
ent = Span(doc, 10, 16, label="size")
doc.spans["lookup_zones"] = [ent]
doc = matcher(doc)
assert len(doc.ents) == 2
assert len(doc.spans["quantities"]) == 2
assert [doc.ents[0].text, doc.ents[1].text] == ["2.0cm", "3cm"]
assert [doc.ents[0]._.value.cm, doc.ents[1]._.value.cm] == [2.0, 3]
def test_quantity_snippets(blank_nlp, matcher: QuantitiesMatcher):
for text, result in [
("0.50g", ["0.5 g"]),
("0.050g", ["0.05 g"]),
("1 m 50", ["1.5 m"]),
("1.50 m", ["1.5 m"]),
("1,50m", ["1.5 m"]),
("2.0cm x 3cm", ["2.0 cm", "3 cm"]),
("2 par 1mm", ["2 mm", "1 mm"]),
("8, 13 et 15dm", ["8 dm", "13 dm", "15 dm"]),
("1 / 50 kg", ["0.02 kg"]),
]:
doc = blank_nlp(text)
doc = matcher(doc)
assert [str(span._.value) for span in doc.spans["quantities"]] == result
def test_error_management(blank_nlp, matcher: QuantitiesMatcher):
text = """
Leucocytes ¦ ¦ ¦4.2 ¦ ¦4.0-10.0
Hémoglobine ¦ ¦9.0 - ¦ ¦13-14
"""
doc = blank_nlp(text)
doc = matcher(doc)
assert len(doc.spans["quantities"]) == 0
def test_conversions(blank_nlp, matcher: QuantitiesMatcher):
tests = [
("20 dm3", "l", 20),
("20 dm3", "m3", 0.02),
("20 dm3", "cm3", 20000),
("10 l", "cm3", 10000),
("10 l", "cl", 1000),
("25 kg/m2", "kg_per_cm2", 0.0025),
("2.4 x10*9µl", "l", 2400),
]
for text, unit, expected in tests:
doc = blank_nlp(text)
doc = matcher(doc)
result = getattr(doc.spans["quantities"][0]._.value, unit)
assert result == pytest.approx(
expected, 1e-6
), f"{result} != {expected} for {text} in {unit}"