import spacy
import edsnlp
def make_nlp(lang):
if lang == "eds":
model = spacy.blank("eds")
else:
model = edsnlp.blank("fr")
model.add_pipe("eds.normalizer")
model.add_pipe("eds.sentences")
model.add_pipe("eds.sections")
model.add_pipe(
"eds.matcher",
config=dict(
terms=dict(patient="patient"),
attr="NORM",
ignore_excluded=True,
),
)
model.add_pipe(
"eds.matcher",
name="matcher2",
config=dict(
regex=dict(anomalie=r"anomalie"),
),
)
model.add_pipe("eds.hypothesis")
model.add_pipe("eds.negation")
model.add_pipe("eds.family")
model.add_pipe("eds.history")
model.add_pipe("eds.reported_speech")
model.add_pipe("eds.dates")
model.add_pipe("eds.quantities")
return model