[cad161]: / tests / conftest.py

Download this file

240 lines (189 with data), 5.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import logging
import os
import time
from datetime import datetime
import pandas as pd
import pytest
import spacy
from helpers import make_nlp
from pytest import fixture
import edsnlp
os.environ["EDSNLP_MAX_CPU_WORKERS"] = "2"
os.environ["TZ"] = "Europe/Paris"
try:
time.tzset()
except AttributeError:
pass
logging.basicConfig(level=logging.INFO)
try:
import torch.nn
except ImportError:
torch = None
pytest.importorskip("rich")
def pytest_collection_modifyitems(items):
"""Run test_docs* at the end"""
first_tests = []
last_tests = []
for item in items:
if item.name.startswith("test_code_blocks"):
last_tests.append(item)
else:
first_tests.append(item)
items[:] = first_tests + last_tests
@fixture(scope="session", params=["eds", "fr"])
def lang(request):
return request.param
@fixture(scope="session")
def nlp(lang):
return make_nlp(lang)
@fixture(scope="session")
def nlp_eds():
return make_nlp("eds")
@fixture
def blank_nlp(lang):
if lang == "eds":
model = spacy.blank("eds")
else:
model = edsnlp.blank("fr")
model.add_pipe("eds.sentences")
return model
def make_ml_pipeline():
nlp = edsnlp.blank("eds")
nlp.add_pipe("eds.sentences", name="sentences")
nlp.add_pipe(
"eds.transformer",
name="transformer",
config=dict(
model="prajjwal1/bert-tiny",
window=128,
stride=96,
),
)
nlp.add_pipe(
"eds.ner_crf",
name="ner",
config=dict(
embedding=nlp.get_pipe("transformer"),
mode="independent",
target_span_getter=["ents", "ner-preds"],
span_setter="ents",
),
)
ner = nlp.get_pipe("ner")
ner.update_labels(["PERSON", "GIFT"])
return nlp
@fixture()
def ml_nlp():
if torch is None:
pytest.skip("torch not installed", allow_module_level=False)
return make_ml_pipeline()
@fixture(scope="session")
def frozen_ml_nlp():
if torch is None:
pytest.skip("torch not installed", allow_module_level=False)
return make_ml_pipeline()
@fixture()
def text():
return (
"Le patient est admis pour des douleurs dans le bras droit, "
"mais n'a pas de problème de locomotion. "
"Historique d'AVC dans la famille. pourrait être un cas de rhume.\n"
"NBNbWbWbNbWbNBNbNbWbWbNBNbWbNbNbWbNBNbWbNbNBWbWbNbNbNBWbNbWbNbWBNb"
"NbWbNbNBNbWbWbNbWBNbNbWbNBNbWbWbNb\n"
"Pourrait être un cas de rhume.\n"
"Motif :\n"
"Douleurs dans le bras droit.\n"
"ANTÉCÉDENTS\n"
"Le patient est déjà venu pendant les vacances\n"
"d'été.\n"
"Pas d'anomalie détectée."
)
@fixture
def doc(nlp, text):
return nlp(text)
@fixture
def blank_doc(blank_nlp, text):
return blank_nlp(text)
@fixture
def df_notes():
N_LINES = 100
notes = pd.DataFrame(
data={
"note_id": list(range(N_LINES)),
"note_text": N_LINES * [text],
"note_datetime": N_LINES * [datetime.today()],
}
)
return notes
def make_df_note(text, module):
from pyspark.sql import types as T
from pyspark.sql.session import SparkSession
data = [(i, i // 5, text, datetime(2021, 1, 1)) for i in range(20)]
if module == "pandas":
return pd.DataFrame(
data=data, columns=["note_id", "person_id", "note_text", "note_datetime"]
)
note_schema = T.StructType(
[
T.StructField("note_id", T.IntegerType()),
T.StructField("person_id", T.IntegerType()),
T.StructField("note_text", T.StringType()),
T.StructField(
"note_datetime",
T.TimestampType(),
),
]
)
spark = SparkSession.builder.getOrCreate()
notes = spark.createDataFrame(data=data, schema=note_schema)
if module == "pyspark":
return notes
if module == "koalas":
try:
import databricks.koalas # noqa F401
except ImportError:
pytest.skip("Koalas not installed")
return notes.to_koalas()
@fixture
def df_notes_pandas(text):
return make_df_note(text, "pandas")
@fixture
def df_notes_pyspark(text):
return make_df_note(text, "pyspark")
@fixture
def df_notes_koalas(text):
return make_df_note(text, "koalas")
@fixture
def run_in_test_dir(request, monkeypatch):
monkeypatch.chdir(request.fspath.dirname)
@pytest.fixture(autouse=True)
def stop_spark():
yield
try:
from pyspark.sql import SparkSession
except ImportError:
return
try:
getActiveSession = SparkSession.getActiveSession
except AttributeError:
def getActiveSession(): # pragma: no cover
from pyspark import SparkContext
sc = SparkContext._active_spark_context
if sc is None:
return None
else:
assert sc._jvm is not None
if sc._jvm.SparkSession.getActiveSession().isDefined():
SparkSession(sc, sc._jvm.SparkSession.getActiveSession().get())
try:
return SparkSession._activeSession
except AttributeError:
try:
return SparkSession._instantiatedSession
except AttributeError:
return None
else:
return None
session = getActiveSession()
if session is not None:
session.stop()