[cad161]: / notebooks / normalizer / profiling.md

Download this file

236 lines (210 with data), 4.6 kB


jupyter:
jupytext:
formats: md,ipynb
text_representation:
extension: .md
format_name: markdown
format_version: "1.3"
jupytext_version: 1.13.4
kernelspec:
display_name: "Python 3.9.5 64-bit ('.venv': venv)"
language: python
name: python3


%reload_ext autoreload
%autoreload 2
import context

import spacy

Date detection

text = (
    "Le patient est admis pour des douleurs dans le bras droit, mais n'a pas de problème de locomotion. "
    "Historique d'AVC dans la famille. pourrait être un cas de rhume.\n"
    "NBNbWbWbNbWbNBNbNbWbWbNBNbWbNbNbWbNBNbWbNbNBWbWbNbNbNBWbNbWbNbWBNbNbWbNbNBNbWbWbNbWBNbNbWbNBNbWbWbNb\n"
    "Pourrait être un cas de rhume.\n"
    "Motif :\n"
    "Douleurs dans le bras droit.\n"
    "ANTÉCÉDENTS\n"
    "Le patient est déjà venu\n"
    "Pas d'anomalie détectée.\n\n"
) * 10
nlp = spacy.blank('fr')
# nlp.add_pipe('lowercase')
# nlp.add_pipe('accents')
# nlp.add_pipe('pollution')
# nlp.add_pipe('normalizer', config=dict(lowercase=False, accents=False, pollution=False))
nlp.add_pipe('sentences')
nlp.add_pipe(
    "matcher",
    name="matcher",
    config=dict(
        attr='TEXT',
        regex=dict(anomalie=r"anomalie"),
    ),
)
nlp.add_pipe('negation', config=dict(attr='TEXT'))
%%timeit
nlp(text)
nlp = spacy.blank('fr')
nlp.add_pipe('lowercase')
# nlp.add_pipe('accents')
# nlp.add_pipe('pollution')
# nlp.add_pipe('normalizer', config=dict(lowercase=False, accents=False, pollution=False))
nlp.add_pipe('sentences')
nlp.add_pipe(
    "matcher",
    name="matcher",
    config=dict(
        attr='TEXT',
        regex=dict(anomalie=r"anomalie"),
    ),
)
nlp.add_pipe('negation', config=dict(attr='TEXT'))
%%timeit
nlp(text)
nlp = spacy.blank('fr')
nlp.add_pipe('lowercase')
nlp.add_pipe('accents')
# nlp.add_pipe('pollution')
# nlp.add_pipe('normalizer', config=dict(lowercase=False, accents=False, pollution=False))
nlp.add_pipe('sentences')
nlp.add_pipe(
    "matcher",
    name="matcher",
    config=dict(
        attr='TEXT',
        regex=dict(anomalie=r"anomalie"),
    ),
)
nlp.add_pipe('negation', config=dict(attr='TEXT'))
%%timeit
nlp(text)
nlp = spacy.blank('fr')
nlp.add_pipe('lowercase')
nlp.add_pipe('accents')
nlp.add_pipe('pollution')
# nlp.add_pipe('normalizer', config=dict(lowercase=False, accents=False, pollution=False))
nlp.add_pipe('sentences')
nlp.add_pipe(
    "matcher",
    name="matcher",
    config=dict(
        attr='TEXT',
        regex=dict(anomalie=r"anomalie"),
    ),
)
nlp.add_pipe('negation', config=dict(attr='TEXT'))
%%timeit
nlp(text)
nlp = spacy.blank('fr')
nlp.add_pipe('normalizer')
nlp.add_pipe('sentences')
nlp.add_pipe(
    "matcher",
    name="matcher",
    config=dict(
        attr='TEXT',
        regex=dict(anomalie=r"anomalie"),
    ),
)
nlp.add_pipe('negation', config=dict(attr='TEXT'))
%%timeit
nlp(text)
nlp = spacy.blank('fr')
# nlp.add_pipe('lowercase')
# nlp.add_pipe('accents')
# nlp.add_pipe('pollution')
# nlp.add_pipe('normalizer', config=dict(lowercase=False, accents=False, pollution=False))
nlp.add_pipe('normalizer')
nlp.add_pipe('sentences')
nlp.add_pipe(
    "matcher",
    name="matcher",
    config=dict(
        attr='CUSTOM_NORM',
        regex=dict(anomalie=r"anomalie"),
    ),
)
nlp.add_pipe('negation', config=dict(attr='TEXT'))
%%timeit
nlp(text)
nlp = spacy.blank('fr')
# nlp.add_pipe('lowercase')
# nlp.add_pipe('accents')
# nlp.add_pipe('pollution')
# nlp.add_pipe('normalizer', config=dict(lowercase=False, accents=False, pollution=False))
nlp.add_pipe('normalizer')
nlp.add_pipe('sentences')
nlp.add_pipe(
    "matcher",
    name="matcher",
    config=dict(
        attr='CUSTOM_NORM',
        regex=dict(anomalie=r"anomalie"),
    ),
)
nlp.add_pipe('negation', config=dict(attr='CUSTOM_NORM'))
%%timeit
nlp(text)
nlp = spacy.blank('fr')
# nlp.add_pipe('lowercase')
# nlp.add_pipe('accents')
# nlp.add_pipe('pollution')
# nlp.add_pipe('normalizer', config=dict(lowercase=False, accents=False, pollution=False))
nlp.add_pipe('normalizer')
nlp.add_pipe('sentences')
nlp.add_pipe(
    "matcher",
    name="matcher",
    config=dict(
        attr='CUSTOM_NORM',
        regex=dict(anomalie=r"anomalie"),
    ),
)
nlp.add_pipe('negation', config=dict(attr='CUSTOM_NORM'))
%%timeit
nlp(text)