|
a |
|
b/tests/tuning/test_update_config.py |
|
|
1 |
import pytest |
|
|
2 |
|
|
|
3 |
try: |
|
|
4 |
import optuna |
|
|
5 |
except ImportError: |
|
|
6 |
optuna = None |
|
|
7 |
|
|
|
8 |
if optuna is None: |
|
|
9 |
pytest.skip("optuna not installed", allow_module_level=True) |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
from edsnlp.tune import update_config |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
@pytest.fixture |
|
|
16 |
def minimal_config(): |
|
|
17 |
return { |
|
|
18 |
"train": { |
|
|
19 |
"layers": None, |
|
|
20 |
}, |
|
|
21 |
".lr": { |
|
|
22 |
"learning_rate": None, |
|
|
23 |
}, |
|
|
24 |
} |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
@pytest.fixture |
|
|
28 |
def hyperparameters(): |
|
|
29 |
return { |
|
|
30 |
"train.layers": { |
|
|
31 |
"type": "int", |
|
|
32 |
"low": 2, |
|
|
33 |
"high": 8, |
|
|
34 |
"step": 2, |
|
|
35 |
}, |
|
|
36 |
"'.lr'.learning_rate": { |
|
|
37 |
"alias": "learning_rate", |
|
|
38 |
"type": "float", |
|
|
39 |
"low": 0.001, |
|
|
40 |
"high": 0.1, |
|
|
41 |
"log": True, |
|
|
42 |
}, |
|
|
43 |
"train.batch_size": { |
|
|
44 |
"alias": "batch_size", |
|
|
45 |
"type": "categorical", |
|
|
46 |
"choices": [32, 64, 128], |
|
|
47 |
}, |
|
|
48 |
} |
|
|
49 |
|
|
|
50 |
|
|
|
51 |
@pytest.fixture |
|
|
52 |
def hyperparameters_with_invalid_type(): |
|
|
53 |
return { |
|
|
54 |
"train.optimizer": { |
|
|
55 |
"type": "string", |
|
|
56 |
"choices": ["adam", "sgd"], |
|
|
57 |
} |
|
|
58 |
} |
|
|
59 |
|
|
|
60 |
|
|
|
61 |
@pytest.fixture |
|
|
62 |
def hyperparameters_with_invalid_path(): |
|
|
63 |
return { |
|
|
64 |
"model.layers": { |
|
|
65 |
"type": "int", |
|
|
66 |
"low": 2, |
|
|
67 |
"high": 8, |
|
|
68 |
"step": 2, |
|
|
69 |
}, |
|
|
70 |
} |
|
|
71 |
|
|
|
72 |
|
|
|
73 |
@pytest.fixture |
|
|
74 |
def trial(): |
|
|
75 |
study = optuna.create_study(direction="maximize") |
|
|
76 |
trial = study.ask() |
|
|
77 |
return trial |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
def test_update_config_with_values(minimal_config, hyperparameters): |
|
|
81 |
values = {"learning_rate": 0.05, "train.layers": 6, "batch_size": 64} |
|
|
82 |
_, updated_config = update_config(minimal_config, hyperparameters, values=values) |
|
|
83 |
|
|
|
84 |
assert updated_config[".lr"]["learning_rate"] == values["learning_rate"] |
|
|
85 |
assert updated_config["train"]["layers"] == values["train.layers"] |
|
|
86 |
assert updated_config["train"]["batch_size"] == values["batch_size"] |
|
|
87 |
|
|
|
88 |
|
|
|
89 |
def test_update_config_with_trial(minimal_config, hyperparameters, trial): |
|
|
90 |
_, updated_config = update_config(minimal_config, hyperparameters, trial=trial) |
|
|
91 |
|
|
|
92 |
learning_rate = updated_config[".lr"]["learning_rate"] |
|
|
93 |
layers = updated_config["train"]["layers"] |
|
|
94 |
batch_size = updated_config["train"]["batch_size"] |
|
|
95 |
|
|
|
96 |
assert ( |
|
|
97 |
hyperparameters["'.lr'.learning_rate"]["low"] |
|
|
98 |
<= learning_rate |
|
|
99 |
<= hyperparameters["'.lr'.learning_rate"]["high"] |
|
|
100 |
) |
|
|
101 |
assert ( |
|
|
102 |
hyperparameters["train.layers"]["low"] |
|
|
103 |
<= layers |
|
|
104 |
<= hyperparameters["train.layers"]["high"] |
|
|
105 |
) |
|
|
106 |
assert layers % hyperparameters["train.layers"]["step"] == 0 |
|
|
107 |
assert batch_size in hyperparameters["train.batch_size"]["choices"] |
|
|
108 |
|
|
|
109 |
|
|
|
110 |
def test_update_config_raises_error_on_unknown_parameter_type( |
|
|
111 |
minimal_config, hyperparameters_with_invalid_type, trial |
|
|
112 |
): |
|
|
113 |
with pytest.raises( |
|
|
114 |
ValueError, |
|
|
115 |
match="Unknown parameter type 'string' for hyperparameter 'train.optimizer'.", |
|
|
116 |
): |
|
|
117 |
update_config(minimal_config, hyperparameters_with_invalid_type, trial=trial) |
|
|
118 |
|
|
|
119 |
|
|
|
120 |
def test_update_config_raises_error_on_wrong_path( |
|
|
121 |
minimal_config, hyperparameters_with_invalid_path, trial |
|
|
122 |
): |
|
|
123 |
with pytest.raises(KeyError, match="Path 'model' not found in config."): |
|
|
124 |
update_config(minimal_config, hyperparameters_with_invalid_path, trial=trial) |