[cad161]: / edsnlp / core / pipeline.py

Download this file

1367 lines (1207 with data), 45.3 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
import contextlib
import functools
import importlib
import os
import re
import shutil
import subprocess
import sys
import sysconfig
import warnings
from enum import Enum
from inspect import Parameter, signature
from pathlib import Path
from types import FunctionType
from typing import (
TYPE_CHECKING,
Any,
Callable,
Container,
Dict,
Iterable,
List,
Mapping,
Optional,
Sequence,
Set,
Tuple,
Type,
TypeVar,
Union,
)
import pkg_resources
import requests
import spacy
import srsly
from confit import Config
from confit.errors import ConfitValidationError, patch_errors
from confit.utils.xjson import Reference
from spacy.language import BaseDefaults
from spacy.tokenizer import Tokenizer
from spacy.tokens import Doc
from spacy.util import get_lang_class
from spacy.vocab import Vocab, create_vocab
from typing_extensions import Literal, Self
from ..core.registries import PIPE_META, CurriedFactory, FactoryMeta, registry
from ..utils.collections import (
FrozenDict,
FrozenList,
FrozenNamespace,
batch_compress_dict,
decompress_dict,
)
from ..utils.typing import AsList, Validated
from .stream import Stream
if TYPE_CHECKING:
import torch
try:
import importlib.metadata as importlib_metadata
except ModuleNotFoundError:
import importlib_metadata
import edsnlp
from edsnlp.utils.collections import flatten
EMPTY_LIST = FrozenList()
FORBIDDEN_AUTO_HF_OWNERS = {
"models",
"artifacts",
"model-last",
"model-best",
".",
"..",
}
class CacheEnum(str, Enum):
preprocess = "preprocess"
collate = "collate"
forward = "forward"
Pipe = TypeVar("Pipe", bound=Callable[[Doc], Doc])
@registry.core.register("base")
class Pipeline(Validated):
"""
New pipeline to use as a drop-in replacement for spaCy's pipeline.
It uses PyTorch as the deep-learning backend and allows components to share
subcomponents.
See the documentation for more details.
"""
def __init__(
self,
lang: str,
create_tokenizer: Optional[Callable[[Self], Tokenizer]] = None,
vocab: Union[bool, Vocab] = True,
batch_size: Optional[int] = None,
vocab_config: Optional[Type[BaseDefaults]] = None,
meta: Dict[str, Any] = None,
pipeline: Optional[Sequence[str]] = None,
components: Dict[str, Any] = {},
disable: AsList[str] = EMPTY_LIST,
enable: AsList[str] = EMPTY_LIST,
exclude: AsList = EMPTY_LIST,
):
"""
Parameters
----------
lang: str
Language code
create_tokenizer: Optional[Callable[[Self], Tokenizer]]
Function that creates a tokenizer for the pipeline
vocab: Union[bool, Vocab]
Whether to create a new vocab or use an existing one
vocab_config: Type[BaseDefaults]
Configuration for the vocab
meta: Dict[str, Any]
Meta information about the pipeline
"""
spacy_blank_cls = get_lang_class(lang)
self.Defaults = spacy_blank_cls.Defaults
if batch_size is not None:
warnings.warn(
"The 'batch_size' argument is deprecated. Use the 'batch_size' "
"argument in `stream.map_pipeline` instead.",
DeprecationWarning,
)
self.batch_size = batch_size
if (vocab is not True) and (vocab_config is not None):
raise ValueError(
"You must specify either vocab or vocab_config but not both."
)
if vocab is True:
vocab = create_vocab(lang, vocab_config or BaseDefaults)
self.vocab = vocab
if create_tokenizer is None:
create_tokenizer = Config.resolve(
spacy_blank_cls.default_config.merge(spacy_blank_cls.Defaults.config)[
"nlp"
]["tokenizer"]
)
self._tokenizer_config = Config.serialize(create_tokenizer)
self.tokenizer = create_tokenizer(self)
self._components: List[Tuple[str, Pipe]] = []
self._disabled: List[str] = []
self._path: Optional[Path] = None
self.meta = dict(meta) if meta is not None else {}
self.lang: str = lang
self._cache: Optional[Dict] = None
pipeline = list(components) if pipeline is None else pipeline
self._add_pipes(pipeline, components, exclude, enable, disable)
@property
def pipeline(self) -> List[Tuple[str, Pipe]]:
return FrozenList(self._components)
@property
def pipe_names(self) -> List[str]:
return FrozenList([name for name, _ in self._components])
@property
def pipes(self):
return FrozenNamespace({name: pipe for name, pipe in self._components})
component_names = pipe_names
def get_pipe(self, name: str) -> Pipe:
"""
Get a component by its name.
Parameters
----------
name: str
The name of the component to get.
Returns
-------
Pipe
"""
for n, pipe in self.pipeline:
if n == name:
return pipe
raise ValueError(f"Pipe {repr(name)} not found in pipeline.")
def has_pipe(self, name: str) -> bool:
"""
Check if a component exists in the pipeline.
Parameters
----------
name: str
The name of the component to check.
Returns
-------
bool
"""
return any(n == name for n, _ in self.pipeline)
def create_pipe(
self,
factory: str,
name: str,
config: Dict[str, Any] = None,
) -> Pipe:
"""
Create a component from a factory name.
Parameters
----------
factory: str
The name of the factory to use
name: str
The name of the component
config: Dict[str, Any]
The config to pass to the factory
Returns
-------
Pipe
"""
try:
pipe = Config(
{
"@factory": factory,
**(config if config is not None else {}),
}
).resolve(registry=registry)
if isinstance(pipe, CurriedFactory):
if name is None:
name = signature(pipe.factory).parameters.get("name").default
if name is None or name == Parameter.empty:
name = factory
pipe = pipe.instantiate(nlp=self, path=(name,))
except ConfitValidationError as e:
raise e.with_traceback(None)
return pipe
def add_pipe(
self,
factory: Union[str, Pipe],
first: bool = False,
before: Optional[str] = None,
after: Optional[str] = None,
name: Optional[str] = None,
config: Optional[Dict[str, Any]] = None,
) -> Pipe:
"""
Add a component to the pipeline.
Parameters
----------
factory: Union[str, Pipe]
The name of the component to add or the component itself
name: Optional[str]
The name of the component. If not provided, the name of the component
will be used if it has one (.name), otherwise the factory name will be used.
first: bool
Whether to add the component to the beginning of the pipeline. This argument
is mutually exclusive with `before` and `after`.
before: Optional[str]
The name of the component to add the new component before. This argument is
mutually exclusive with `after` and `first`.
after: Optional[str]
The name of the component to add the new component after. This argument is
mutually exclusive with `before` and `first`.
config: Dict[str, Any]
The arguments to pass to the component factory.
Note that instead of replacing arguments with the same keys, the config
will be merged with the default config of the component. This means that
you can override specific nested arguments without having to specify the
entire config.
Returns
-------
Pipe
The component that was added to the pipeline.
"""
if isinstance(factory, str):
pipe = self.create_pipe(factory, name, config)
name = name or getattr(pipe, "name", factory)
else:
if config is not None:
raise ValueError(
"Can't pass config or name with an instantiated component",
)
if isinstance(factory, CurriedFactory):
name = name or factory.kwargs.get("name")
factory = factory.instantiate(nlp=self, path=(name,))
pipe = factory
name = name or getattr(pipe, "name", None)
if name is None:
raise ValueError(
"The component does not have a name, so you must provide one",
)
if hasattr(pipe, "name") and name != pipe.name:
pipe.name = name
assert sum([before is not None, after is not None, first]) <= 1, (
"You can only use one of before, after, or first",
)
insertion_idx = (
0
if first
else self.pipe_names.index(before)
if before is not None
else self.pipe_names.index(after) + 1
if after is not None
else len(self._components)
)
self._components.insert(insertion_idx, (name, pipe))
return pipe
def get_pipe_meta(self, name: str) -> FactoryMeta:
"""
Get the meta information for a component.
Parameters
----------
name: str
The name of the component to get the meta for.
Returns
-------
Dict[str, Any]
"""
pipe = self.get_pipe(name)
return PIPE_META.get(pipe, {})
def make_doc(self, text: str) -> Doc:
"""
Create a Doc from text.
Parameters
----------
text: str
The text to create the Doc from.
Returns
-------
Doc
"""
return self.tokenizer(text)
def _ensure_doc(self, text: Union[str, Doc]) -> Doc:
"""
Ensure that the input is a Doc.
Parameters
----------
text: Union[str, Doc]
The text to create the Doc from, or a Doc.
Returns
-------
Doc
"""
return text if isinstance(text, Doc) else self.make_doc(text)
def __call__(self, text: Union[str, Doc]) -> Doc:
"""
Apply each component successively on a document.
Parameters
----------
text: Union[str, Doc]
The text to create the Doc from, or a Doc.
Returns
-------
Doc
"""
doc = self._ensure_doc(text)
with self.cache():
for name, pipe in self.pipeline:
if name in self._disabled:
continue
# This is a hack to get around the ambiguity
# between the __call__ method of Pytorch modules
# and the __call__ methods of spacy components
if hasattr(pipe, "batch_process"):
doc = next(iter(pipe.batch_process([doc])))
else:
doc = pipe(doc)
return doc
def pipe(
self,
inputs: Union[Iterable, Stream],
n_process: int = None,
**kwargs,
) -> Stream:
"""
Process a stream of documents by applying each component successively on
batches of documents.
Parameters
----------
inputs: Iterable[Union[str, Doc]]
The inputs to create the Docs from, or Docs directly.
n_process: int
Deprecated. Use the ".set_processing(num_cpu_workers=n_process)" method
on the returned data stream instead.
The number of parallel workers to use. If 0, the operations will be
executed sequentially.
Returns
-------
Stream
"""
stream = edsnlp.data.from_iterable(inputs)
stream = stream.map_pipeline(self, **kwargs)
if n_process is not None:
stream = stream.set_processing(num_cpu_workers=n_process)
return stream
@contextlib.contextmanager
def cache(self):
"""
Enable caching for all (trainable) components in the pipeline
"""
for name, pipe in self.torch_components():
pipe.enable_cache()
yield
for name, pipe in self.torch_components():
pipe.disable_cache()
def torch_components(
self, disable: Container[str] = ()
) -> Iterable[Tuple[str, "edsnlp.core.torch_component.TorchComponent"]]:
"""
Yields components that are PyTorch modules.
Parameters
----------
disable: Container[str]
The names of disabled components, which will be skipped.
Returns
-------
Iterable[Tuple[str, 'edsnlp.core.torch_component.TorchComponent']]
"""
for name, pipe in self.pipeline:
if name not in disable and hasattr(pipe, "forward"):
yield name, pipe
def connected_pipes_names(self) -> List[List[str]]:
"""
Returns a list of lists of connected components in the pipeline,
i.e. components that share at least one parameter.
Returns
-------
List[List[str]]
"""
pipe_to_params = {}
for name, pipe in self.torch_components():
pipe_to_params[name] = {id(p) for p in pipe.parameters()}
remaining_pipes = list(pipe_to_params)
results = []
while len(remaining_pipes):
current = [remaining_pipes.pop(0)]
i = 0
while i < len(current):
a = current[i]
i += 1
for j, b in enumerate(list(remaining_pipes)):
if a is not b and pipe_to_params[a] & pipe_to_params[b]:
current.append(b)
remaining_pipes[j] = None
remaining_pipes = [p for p in remaining_pipes if p is not None]
results.append(current)
return results
def post_init(self, data: Iterable[Doc], exclude: Optional[Set] = None):
"""
Completes the initialization of the pipeline by calling the post_init
method of all components that have one.
This is useful for components that need to see some data to build
their vocabulary, for instance.
Parameters
----------
data: Iterable[Doc]
The documents to use for initialization.
Each component will not necessarily see all the data.
exclude: Optional[Container]
Components to exclude from post initialization on data
"""
exclude = set() if exclude is None else set(exclude)
for name, pipe in self._components:
if (
hasattr(pipe, "post_init")
and name not in self.disabled
and name not in exclude
):
pipe.post_init(data, exclude=exclude)
@classmethod
def from_config(
cls,
config: Union[Dict[str, Any], "Pipeline"] = {},
*,
vocab: Union[Vocab, bool] = True,
disable: Union[str, Iterable[str]] = EMPTY_LIST,
enable: Union[str, Iterable[str]] = EMPTY_LIST,
exclude: Union[str, Iterable[str]] = EMPTY_LIST,
meta: Dict[str, Any] = FrozenDict(),
):
"""
Create a pipeline from a config object
Parameters
----------
config: Config
The config to use
vocab: Union["spacy.Vocab", bool]
The spaCy vocab to use. If True, a new vocab will be created
disable: Union[str, Iterable[str]]
Components to disable
enable: Union[str, Iterable[str]]
Components to enable
exclude: Union[str, Iterable[str]]
Components to exclude
meta: Dict[str, Any]
Metadata to add to the pipeline
Returns
-------
Pipeline
"""
if isinstance(config, Pipeline): # pragma: no cover
return config
root_config = config.copy()
if "nlp" in config:
if isinstance(config["nlp"], Pipeline): # pragma: no cover
return config["nlp"]
if "components" in config and "components" not in config["nlp"]:
config["nlp"]["components"] = Reference("components")
config = config["nlp"]
config = Config(config).resolve(root=root_config, registry=registry)
if isinstance(config, Pipeline): # pragma: no cover
return config
config = dict(config)
components = config.pop("components", {})
pipeline = config.pop("pipeline", list(components.keys()))
tokenizer = config.pop("tokenizer", None)
exclude = list(flatten([*config.pop("exclude", ()), exclude]))
enable = list(flatten([*config.pop("enable", ()), enable]))
disable = list(flatten([*config.pop("disable", ()), disable]))
nlp = Pipeline(
vocab=vocab,
create_tokenizer=tokenizer,
meta=meta,
pipeline=pipeline,
components=components,
exclude=exclude,
enable=enable,
disable=disable,
**config,
)
return nlp
def _add_pipes(
self,
pipeline: Sequence[str],
components: Dict[str, CurriedFactory],
exclude: Container[str],
enable: Container[str],
disable: Container[str],
):
try:
components = CurriedFactory.instantiate(components, nlp=self)
except ConfitValidationError as e:
e = ConfitValidationError(
e.raw_errors,
model=self.__class__,
name=self.__class__.__module__ + "." + self.__class__.__qualname__,
)
e.raw_errors = patch_errors(e.raw_errors, ("components",))
raise e
for name in pipeline:
if name in exclude:
continue
if name not in components:
raise ValueError(f"Component {repr(name)} not found in config")
self.add_pipe(components[name], name=name)
# Set of components name if it's in the disable list
# or if it's not in the enable list and the enable list is not empty
self._disabled = [
name
for name in self.pipe_names
if name in disable or (enable and name not in enable)
]
@property
def disabled(self):
"""
The names of the disabled components
"""
return FrozenList(self._disabled)
@classmethod
def __get_validators__(cls):
"""
Pydantic validators generator
"""
yield cls.validate
@classmethod
def validate(cls, v, config=None):
"""
Pydantic validator, used in the `validate_arguments` decorated functions
"""
if isinstance(v, dict):
return cls.from_config(v)
if not isinstance(v, cls):
raise ValueError("input is not a Pipeline or config dict")
return v
@property
def preprocess(self):
compressor = batch_compress_dict()
disabled = list(self._disabled)
@functools.wraps(self._preprocess)
def preprocess(doc, supervision: bool = False, compress: bool = True):
prep = self._preprocess(doc, supervision, disabled)
if compress:
prep = compressor(prep)
return prep
return preprocess
def _preprocess(
self,
doc: Doc,
supervision: bool = False,
disabled: Container[str] = (),
):
"""
Run the preprocessing methods of each component in the pipeline
on a document and returns a dictionary containing the results, with the
component names as keys.
Parameters
----------
doc: InputT
The document to preprocess
supervision: bool
Whether to include supervision information in the preprocessing
Returns
-------
Dict[str, Any]
"""
prep = {}
with self.cache():
for name, component in self.pipeline:
if name not in disabled:
prep_comp = (
component.preprocess_supervised(doc)
if supervision and hasattr(component, "preprocess_supervised")
else component.preprocess(doc)
if hasattr(component, "preprocess")
else None
)
if prep_comp is not None:
prep[name] = prep_comp
return prep
def preprocess_many(self, docs: Iterable[Doc], compress=True, supervision=True):
"""
Runs the preprocessing methods of each component in the pipeline on
a collection of documents and returns an iterable of dictionaries containing
the results, with the component names as keys.
Parameters
----------
docs: Iterable[InputT]
compress: bool
Whether to deduplicate identical preprocessing outputs of the results
if multiple documents share identical subcomponents. This step is required
to enable the cache mechanism when training or running the pipeline over a
tabular datasets such as pyarrow tables that do not store referential
equality information.
supervision: bool
Whether to include supervision information in the preprocessing
Returns
-------
Stream
"""
res = Stream.ensure_stream(docs)
res = res.map(functools.partial(self.preprocess, supervision=supervision))
return res
def collate(
self,
batch: Union[Iterable[Dict[str, Any]], Dict[str, Any]],
device: Optional[Union[str, "torch.device"]] = None,
):
"""
Collates a batch of preprocessed samples into a single (maybe nested)
dictionary of tensors by calling the collate method of each component.
Parameters
----------
batch: Union[Iterable[Dict[str, Any]], Dict[str, Any]]
The batch of preprocessed samples
device: Optional[Union[str, "torch.device"]]
Should we move the tensors to a device, if so, which one?
Returns
-------
Dict[str, Any]
The collated batch
"""
batch = decompress_dict(batch)
with self.cache():
for name, component in self.pipeline:
if name in batch:
component_inputs = batch[name]
batch[name] = component.collate(component_inputs)
if device is not None:
batch[name] = component.batch_to_device(batch[name], device)
return batch
def parameters(self):
"""Returns an iterator over the Pytorch parameters of the components in the
pipeline"""
return (p for n, p in self.named_parameters())
def named_parameters(self):
"""Returns an iterator over the Pytorch parameters of the components in the
pipeline"""
seen = set()
for name, component in self.pipeline:
if hasattr(component, "named_parameters"):
for param_name, param in component.named_parameters():
if param in seen:
continue
seen.add(param)
yield f"{name}.{param_name}", param
def to(self, device: Union[str, Optional["torch.device"]] = None): # noqa F821
"""Moves the pipeline to a given device"""
for name, component in self.torch_components():
component.to(device)
return self
def train(self, mode=True):
"""
Enables training mode on pytorch modules
Parameters
----------
mode: bool
Whether to enable training or not
"""
class context:
def __enter__(self):
pass
def __exit__(ctx_self, type, value, traceback):
for name, proc in self.torch_components():
proc.train(was_training[name])
was_training = {name: proc.training for name, proc in self.torch_components()}
for name, proc in self.torch_components():
proc.train(mode)
return context()
def to_disk(
self, path: Union[str, Path], *, exclude: Optional[Set[str]] = None
) -> None:
"""
Save the pipeline to a directory.
Parameters
----------
path: Union[str, Path]
The path to the directory to save the pipeline to. Every component will be
saved to separated subdirectories of this directory, except for tensors
that will be saved to a shared files depending on the references between
the components.
exclude: Sequence[str]
The names of the components, or attributes to exclude from the saving
process.
By default, the vocabulary is excluded since it may contain personal
identifiers and can be rebuilt during inference.
"""
exclude = {"vocab"} if exclude is None else exclude
path = Path(path) if isinstance(path, str) else path
if (
os.path.exists(path)
and os.listdir(path)
and not os.path.exists(path / "config.cfg")
):
raise Exception(
f"The directory {path} already exists and doesn't appear to be a "
"saved pipeline (missing config.cfg). Please erase it manually or "
"choose a different directory."
)
shutil.rmtree(path, ignore_errors=True)
os.makedirs(path, exist_ok=True)
if "tokenizer" not in exclude:
self.tokenizer.to_disk(path / "tokenizer", exclude=["vocab"])
if "meta" not in exclude:
srsly.write_json(path / "meta.json", self.meta)
if "vocab" not in exclude:
self.vocab.to_disk(path / "vocab")
pwd = os.getcwd()
overrides = {"components": {}}
try:
os.chdir(path)
for pipe_name, pipe in self._components:
if hasattr(pipe, "to_disk") and pipe_name not in exclude:
pipe_overrides = pipe.to_disk(Path(pipe_name), exclude=exclude)
overrides["components"][pipe_name] = pipe_overrides
finally:
os.chdir(pwd)
config = self.config.merge(overrides)
if "config" not in exclude:
config.to_disk(path / "config.cfg")
def from_disk(
self,
path: Union[str, Path],
*,
exclude: Optional[Union[str, Sequence[str]]] = None,
device: Optional[Union[str, "torch.device"]] = "cpu", # noqa F821
) -> "Pipeline":
"""
Load the pipeline from a directory. Components will be updated in-place.
Parameters
----------
path: Union[str, Path]
The path to the directory to load the pipeline from
exclude: Optional[Union[str, Sequence[str]]]
The names of the components, or attributes to exclude from the loading
process.
device: Optional[Union[str, "torch.device"]]
Device to use when loading the tensors
"""
def deserialize_meta(path: Path) -> None:
if path.exists():
data = srsly.read_json(path)
self.meta.update(data)
# self.meta always overrides meta["vectors"] with the metadata
# from self.vocab.vectors, so set the name directly
self.vocab.vectors.name = data.get("vectors", {}).get("name")
def deserialize_vocab(path: Path) -> None:
if path.exists():
self.vocab.from_disk(path, exclude=exclude)
exclude = (
set()
if exclude is None
else {exclude}
if isinstance(exclude, str)
else set(exclude)
)
path = (Path(path) if isinstance(path, str) else path).absolute()
if (path / "meta.json").exists() and "meta" not in exclude:
deserialize_meta(path / "meta.json")
if (path / "vocab").exists() and "vocab" not in exclude:
deserialize_vocab(path / "vocab")
if (path / "tokenizer").exists() and "tokenizer" not in exclude:
self.tokenizer.from_disk(path / "tokenizer", exclude=["vocab"])
pwd = os.getcwd()
try:
os.chdir(path)
for name, proc in self._components:
if hasattr(proc, "from_disk") and name not in exclude:
proc.from_disk(Path(name), exclude=exclude)
# Convert to list here in case exclude is (default) tuple
exclude.add(name)
finally:
os.chdir(pwd)
self._path = path # type: ignore[assignment]
return self
# override config property getter to remove "factory" key from components
@property
def cfg(self) -> Config:
"""
Returns the config of the pipeline, including the config of all components.
Updated from spacy to allow references between components.
"""
return Config(
{
"lang": self.lang,
"pipeline": list(self.pipe_names),
"components": {key: component for key, component in self._components},
"tokenizer": self._tokenizer_config,
}
)
@property
def config(self) -> Config:
config = Config({"nlp": self.cfg.copy()})
config["components"] = config["nlp"].pop("components")
return config.serialize()
def select_pipes(
self,
*,
disable: Optional[Union[str, Iterable[str]]] = None,
enable: Optional[Union[str, Iterable[str]]] = None,
):
"""
Temporarily disable and enable components in the pipeline.
Parameters
----------
disable: Optional[Union[str, Iterable[str]]]
The name of the component to disable, or a list of names.
enable: Optional[Union[str, Iterable[str]]]
The name of the component to enable, or a list of names.
"""
class context:
def __enter__(self):
pass
def __exit__(ctx_self, type, value, traceback):
self._disabled = disabled_before
disable = [disable] if isinstance(disable, str) else disable
pipe_names = set(self.pipe_names)
if enable is not None:
enable = [enable] if isinstance(enable, str) else enable
if set(enable) - pipe_names:
raise ValueError(
"Enabled pipes {} not found in pipeline.".format(
sorted(set(enable) - pipe_names)
)
)
to_disable = [pipe for pipe in self.pipe_names if pipe not in enable]
# raise an error if the enable and disable keywords are not consistent
if disable is not None and disable != to_disable:
raise ValueError("Inconsistent values for `enable` and `disable`")
disable = to_disable
disable = disable or ()
if set(disable) - pipe_names:
raise ValueError(
"Disabled pipes {} not found in pipeline.".format(
sorted(set(disable) - pipe_names)
)
)
disabled_before = self._disabled
self._disabled = disable
return context()
def package(
self,
name: Optional[str] = None,
root_dir: Union[str, Path] = ".",
build_dir: Optional[Union[str, Path]] = None,
dist_dir: Union[str, Path] = "dist",
artifacts_name: str = "artifacts",
check_dependencies: bool = False,
project_type: Optional[Literal["poetry", "setuptools"]] = None,
version: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = {},
distributions: Optional[AsList[Literal["wheel", "sdist"]]] = ["wheel"],
config_settings: Optional[Mapping[str, Union[str, Sequence[str]]]] = None,
isolation: bool = True,
skip_build_dependency_check: bool = False,
readme_replacements: Dict[str, str] = {},
):
from edsnlp.package import package
return package(
pipeline=self,
name=name,
root_dir=root_dir,
build_dir=build_dir,
dist_dir=dist_dir,
artifacts_name=artifacts_name,
check_dependencies=check_dependencies,
project_type=project_type,
version=version,
metadata=metadata,
distributions=distributions,
config_settings=config_settings,
isolation=isolation,
skip_build_dependency_check=skip_build_dependency_check,
readme_replacements=readme_replacements,
)
if TYPE_CHECKING:
from edsnlp.package import package as package
def __getstate__(self):
state = self.__dict__.copy()
state["_pipe_meta"] = [PIPE_META.get(pipe, {}) for _, pipe in self.pipeline]
return state
def __setstate__(self, state):
self.__dict__.update(state)
for (name, pipe), meta in zip(self.pipeline, state["_pipe_meta"]):
PIPE_META[pipe] = meta
del state["_pipe_meta"]
def __repr__(self):
pipes_str = ""
for name, pipe in self.pipeline:
if pipes_str:
pipes_str += ","
try:
factory_name = Config.serialize(pipe)["@factory"]
except KeyError:
if isinstance(pipe, FunctionType):
factory_name = pipe
else:
factory_name = pipe.__class__.__name__
disabled = " [disabled] " if name in self._disabled else " "
pipe_str = f'"{name}":{disabled}{factory_name}'
pipes_str += f"\n {pipe_str}"
if pipes_str:
pipes_str += "\n"
return f"Pipeline(lang={self.lang}, pipes={{{pipes_str}}})"
def blank(
lang: str,
config: Union[Dict[str, Any], Config] = {},
):
"""
Loads an empty EDS-NLP Pipeline, similarly to `spacy.blank`. In addition to
standard components, this pipeline supports EDS-NLP trainable torch components.
Examples
--------
```python
import edsnlp, edsnlp.pipes as eds
nlp = edsnlp.blank("eds")
nlp.add_pipe(eds.covid())
```
Parameters
----------
lang: str
Language ID, e.g. "en", "fr", "eds", etc.
config: Union[Dict[str, Any], Config]
The config to use for the pipeline
Returns
-------
Pipeline
The new empty pipeline instance.
"""
# Check if language is registered / entry point is available
config_lang = (
config["nlp"].get("lang")
if isinstance(config.get("nlp"), dict)
else config.get("lang")
)
if config_lang is not None and config_lang != lang:
raise ValueError(
"The language specified in the config does not match the lang argument."
)
return Pipeline.from_config({"lang": lang, **config})
@registry.core.register("load")
def load(
model: Union[str, Path, Config],
overrides: Optional[Dict[str, Any]] = None,
*,
exclude: Optional[AsList[str]] = EMPTY_LIST,
disable: Optional[AsList[str]] = EMPTY_LIST,
enable: Optional[AsList[str]] = EMPTY_LIST,
auto_update: bool = False,
install_dependencies: bool = False,
**kwargs,
):
"""
Load a pipeline from a config file or a directory.
Examples
--------
```{ .python .no-check }
import edsnlp
nlp = edsnlp.load(
"path/to/config.cfg",
overrides={"components": {"my_component": {"arg": "value"}}},
)
```
Parameters
----------
model: Union[str, Path, Config]
The config to use for the pipeline, or the path to a config file or a directory.
overrides: Optional[Dict[str, Any]]
Overrides to apply to the config when loading the pipeline. These are the
same parameters as the ones used when initializing the pipeline.
exclude: Optional[Union[str, Iterable[str]]]
The names of the components, or attributes to exclude from the loading
process. :warning: The `exclude` argument will be mutated in place.
auto_update: bool
When installing a pipeline from the Hugging Face Hub, whether to automatically
try to update the model, even if a local version is found. Only applies when
loading from the Hugging Face Hub.
install_dependencies: bool
When installing a pipeline from the Hugging Face Hub, whether to install the
dependencies of the model if they are not already installed. Only applies when
loading from the Hugging Face Hub.
Returns
-------
Pipeline
"""
base_exc = None
error = (
"The load function expects either :\n"
"- a confit Config object\n"
"- the path of a config file (.cfg file)\n"
"- the path of a trained model\n"
"- the name of an installed pipeline package\n"
"- or a model on the huggingface hub if edsnlp[ml] has been installed\n"
f"but got {model!r} which is neither"
)
pipe_selection = {
"exclude": exclude,
"disable": disable,
"enable": enable,
}
pipe_selection = {k: v for k, v in pipe_selection.items() if v is not EMPTY_LIST}
if isinstance(model, (str, Path)):
path = Path(model)
is_dir = path.is_dir()
is_config = path.is_file() and path.suffix in (".cfg", ".yml", ".yaml")
try:
module = importlib.import_module(model)
is_package = True
except (ImportError, AttributeError, TypeError):
module = None
is_package = False
if is_dir and is_package:
warnings.warn(
"The path provided is both a directory and a package : edsnlp will "
"load the package. To load from the directory instead, please pass the "
f'path as "./{path}" instead.'
)
if is_dir:
path = (Path(path) if isinstance(path, str) else path).absolute()
config = Config.from_disk(path / "config.cfg")
if overrides:
config = config.merge(overrides)
pwd = os.getcwd()
try:
os.chdir(path)
nlp = Pipeline.from_config(config, **pipe_selection)
nlp.from_disk(path, exclude=exclude)
nlp.train(False)
finally:
os.chdir(pwd)
return nlp
elif is_config:
model = Config.from_disk(path)
elif is_package:
# Load as package
available_kwargs = {"overrides": overrides, **pipe_selection}
signature_kwargs = signature(module.load).parameters
kwargs = {
name: available_kwargs[name]
for name in signature_kwargs
if name in available_kwargs
}
return module.load(**kwargs)
elif (
isinstance(model, str)
and len(model.split("/")) == 2
and model.split("/")[0] not in FORBIDDEN_AUTO_HF_OWNERS
):
try:
return load_from_huggingface(
model,
overrides=overrides,
auto_update=auto_update,
install_dependencies=install_dependencies,
**kwargs,
)
except (
ImportError,
requests.RequestException,
ValueError,
FileNotFoundError,
) as e:
base_exc = e
if not isinstance(model, Config):
raise ValueError(error) from base_exc
return Pipeline.from_config(model)
def load_from_huggingface(
repo_id: str,
auto_update: bool = False,
install_dependencies: bool = False,
token: Optional[str] = None,
revision: Optional[str] = None,
**kwargs,
):
"""
Load a model from the Hugging Face Hub.
Parameters
----------
repo_id: str
The repository ID of the model to load (e.g. "username/repo_name").
auto_update: bool
Whether to automatically try to update the model, even if a local version
is found.
install_dependencies: bool
Whether to install the dependencies of the model if they are not already
installed.
token: Optional[str]
The Hugging Face Hub API token to use.
revision: Optional[str]
The revision of the model to load.
kwargs: Any
Additional keyword arguments to pass to the model's `load` method.
Returns
-------
"""
from huggingface_hub import snapshot_download
owner, model_name = repo_id.split("/")
module_name = model_name.replace("-", "_")
assert (
len(repo_id.split("/")) == 2
), "Invalid repo_id format (expected 'owner/repo_name' format)"
path = None
mtime = None
try:
path = snapshot_download(
repo_id,
local_files_only=auto_update,
token=token,
revision=revision,
)
mtime = max(os.path.getmtime(x) for x in Path(path).rglob("*"))
except FileNotFoundError:
pass
should_install = False
if path is None or auto_update:
# Download the snapshot, which is the source distribution of the packaged model
path = snapshot_download(
repo_id,
local_files_only=False,
token=token,
revision=revision,
)
new_mtime = max(os.path.getmtime(x) for x in Path(path).rglob("*"))
should_install = new_mtime != mtime
pip_paths = [
os.path.join(sys.exec_prefix, "bin", "pip"),
os.path.join(sys.executable.rsplit("/", 1)[0], "pip"),
os.path.join(sysconfig.get_path("scripts"), "pip"),
os.path.join(sys.exec_prefix, "bin", "pip3"),
os.path.join(sys.executable.rsplit("/", 1)[0], "pip3"),
os.path.join(sysconfig.get_path("scripts"), "pip3"),
]
pip = next((p for p in pip_paths if os.path.exists(p)), None)
pip = pip or shutil.which("pip")
if should_install or not any(
p.startswith(module_name) and p.endswith(".dist-info") for p in os.listdir(path)
):
if pip is None:
raise RuntimeError(f"Couldn't find pip amongst {', '.join(pip_paths)}")
subprocess.run(
[pip, "install", "-e", path, "--target", path, "--no-deps", "--upgrade"]
)
if path not in sys.path:
sys.path.insert(0, path)
# Load dependencies
reqs = importlib_metadata.requires(module_name)
missing_deps = []
# Check if the dependencies are installed, with the correct version
for req in reqs:
req_without_extra = re.sub(r"\[.*\]", "", req)
try:
pkg_resources.require(req_without_extra)
except (pkg_resources.VersionConflict, pkg_resources.DistributionNotFound):
missing_deps.append(req)
if missing_deps:
if not install_dependencies:
warnings.warn(
"Some dependencies could not be satisfied, consider installing them "
"to use the model:\n"
f" pip install {' '.join((repr(str(dep)) for dep in missing_deps))}\n"
f"or let edsnlp do it \n"
f" nlp = edsnlp.load('{repo_id}', install_dependencies=True)\n"
f"You may need to restart your Python session after the installation.",
UserWarning,
)
else:
warnings.warn(
"Installing missing dependencies:\n"
f"pip install {' '.join((repr(str(dep)) for dep in missing_deps))}",
UserWarning,
)
if pip is None:
raise RuntimeError(f"Couldn't find pip amongst {', '.join(pip_paths)}")
subprocess.run([pip, "install", *(str(d) for d in missing_deps)])
module = importlib.import_module(module_name)
return module.load(**kwargs)
PipelineProtocol = Union[Pipeline, spacy.Language]