a b/docs/utilities/connectors/labeltool.md
1
# LabelTool Connector
2
3
LabelTool is an in-house module enabling rapid annotation of pre-extracted entities.
4
5
We provide a ready-to-use function that converts a list of annotated spaCy documents into a `pandas` DataFrame that is readable to LabelTool.
6
7
```python
8
import edsnlp, edsnlp.pipes as eds
9
10
from edsnlp.connectors.labeltool import docs2labeltool
11
12
corpus = [
13
    "Ceci est un document médical.",
14
    "Le patient n'est pas malade.",
15
]
16
17
# Instantiate the spacy pipeline
18
nlp = edsnlp.blank("fr")
19
nlp.add_pipe(eds.sentences())
20
nlp.add_pipe(eds.matcher(terms=dict(medical="médical", malade="malade")))
21
nlp.add_pipe(eds.negation())
22
23
# Convert all BRAT files to a list of documents
24
docs = nlp.pipe(corpus)
25
26
df = docs2labeltool(docs, extensions=["negation"])
27
```
28
29
The results:
30
31
| note_id | note_text                     | start | end | label   | lexical_variant | negation |
32
| ------- | ----------------------------- | ----- | --- | ------- | --------------- | -------- |
33
| 0       | Ceci est un document médical. | 21    | 28  | medical | médical         | False    |
34
| 1       | Le patient n'est pas malade.  | 21    | 27  | malade  | malade          | True     |