|
a |
|
b/docs/tutorials/qualifying-entities.md |
|
|
1 |
# Qualifying entities |
|
|
2 |
|
|
|
3 |
In the previous tutorial, we saw how to match a terminology on a text. Using the `#!python doc.ents` attribute, we can check whether a document mentions a concept of interest to build a cohort or |
|
|
4 |
describe patients. |
|
|
5 |
|
|
|
6 |
## The issue |
|
|
7 |
|
|
|
8 |
However, consider the classical example where we look for the `diabetes` concept: |
|
|
9 |
|
|
|
10 |
=== "French" |
|
|
11 |
|
|
|
12 |
``` |
|
|
13 |
Le patient n'est pas diabétique. |
|
|
14 |
Le patient est peut-être diabétique. |
|
|
15 |
Le père du patient est diabétique. |
|
|
16 |
``` |
|
|
17 |
|
|
|
18 |
=== "English" |
|
|
19 |
|
|
|
20 |
``` |
|
|
21 |
The patient is not diabetic. |
|
|
22 |
The patient could be diabetic. |
|
|
23 |
The patient's father is diabetic. |
|
|
24 |
``` |
|
|
25 |
|
|
|
26 |
None of these expressions should be used to build a cohort: the detected entity is either negated, speculative, or does not concern the patient themself. That's why we need to **qualify the matched |
|
|
27 |
entities**. |
|
|
28 |
|
|
|
29 |
!!! warning |
|
|
30 |
|
|
|
31 |
We show an English example just to explain the issue. |
|
|
32 |
EDS-NLP remains a **French-language** medical NLP library. |
|
|
33 |
|
|
|
34 |
## The solution |
|
|
35 |
|
|
|
36 |
We can use EDS-NLP's qualifier pipes to achieve that. Let's add specific components to our pipeline to detect these three modalities. |
|
|
37 |
|
|
|
38 |
### Adding qualifiers |
|
|
39 |
|
|
|
40 |
Adding qualifier pipes is straightforward: |
|
|
41 |
|
|
|
42 |
```python hl_lines="25-29" |
|
|
43 |
import edsnlp, edsnlp.pipes as eds |
|
|
44 |
|
|
|
45 |
text = ( |
|
|
46 |
"Motif de prise en charge : probable pneumopathie à COVID19, " |
|
|
47 |
"sans difficultés respiratoires\n" |
|
|
48 |
"Le père du patient est asthmatique." |
|
|
49 |
) |
|
|
50 |
|
|
|
51 |
regex = dict( |
|
|
52 |
covid=r"(coronavirus|covid[-\s]?19)", |
|
|
53 |
respiratoire=r"respiratoires?", |
|
|
54 |
) |
|
|
55 |
terms = dict(respiratoire="asthmatique") |
|
|
56 |
|
|
|
57 |
nlp = edsnlp.blank("eds") |
|
|
58 |
nlp.add_pipe( |
|
|
59 |
eds.matcher( |
|
|
60 |
regex=regex, |
|
|
61 |
terms=terms, |
|
|
62 |
attr="LOWER", |
|
|
63 |
), |
|
|
64 |
) |
|
|
65 |
|
|
|
66 |
nlp.add_pipe(eds.sentences()) # (1) |
|
|
67 |
nlp.add_pipe(eds.negation()) # Negation component |
|
|
68 |
nlp.add_pipe(eds.hypothesis()) # Speculation pipe |
|
|
69 |
nlp.add_pipe(eds.family()) # Family context detection |
|
|
70 |
``` |
|
|
71 |
|
|
|
72 |
1. Qualifiers pipes need sentence boundaries to be set (see the [specific documentation](../pipes/qualifiers/index.md) for detail). |
|
|
73 |
|
|
|
74 |
This code is complete, and should run as is. |
|
|
75 |
|
|
|
76 |
### Reading the results |
|
|
77 |
|
|
|
78 |
Let's output the results as a pandas DataFrame for better readability: |
|
|
79 |
|
|
|
80 |
```python hl_lines="2 34-48" |
|
|
81 |
import edsnlp, edsnlp.pipes as eds |
|
|
82 |
import pandas as pd |
|
|
83 |
|
|
|
84 |
text = ( |
|
|
85 |
"Motif de prise en charge : probable pneumopathie à COVID19, " |
|
|
86 |
"sans difficultés respiratoires\n" |
|
|
87 |
"Le père du patient est asthmatique." |
|
|
88 |
) |
|
|
89 |
|
|
|
90 |
regex = dict( |
|
|
91 |
covid=r"(coronavirus|covid[-\s]?19)", |
|
|
92 |
respiratoire=r"respiratoires?", |
|
|
93 |
) |
|
|
94 |
terms = dict(respiratoire="asthmatique") |
|
|
95 |
|
|
|
96 |
nlp = edsnlp.blank("eds") |
|
|
97 |
nlp.add_pipe( |
|
|
98 |
eds.matcher( |
|
|
99 |
regex=regex, |
|
|
100 |
terms=terms, |
|
|
101 |
attr="LOWER", |
|
|
102 |
), |
|
|
103 |
) |
|
|
104 |
|
|
|
105 |
nlp.add_pipe(eds.sentences()) |
|
|
106 |
|
|
|
107 |
nlp.add_pipe(eds.negation()) # Negation component |
|
|
108 |
nlp.add_pipe(eds.hypothesis()) # Speculation pipe |
|
|
109 |
nlp.add_pipe(eds.family()) # Family context detection |
|
|
110 |
|
|
|
111 |
doc = nlp(text) |
|
|
112 |
|
|
|
113 |
# Extraction as a pandas DataFrame |
|
|
114 |
entities = [] |
|
|
115 |
for ent in doc.ents: |
|
|
116 |
d = dict( |
|
|
117 |
lexical_variant=ent.text, |
|
|
118 |
label=ent.label_, |
|
|
119 |
negation=ent._.negation, |
|
|
120 |
hypothesis=ent._.hypothesis, |
|
|
121 |
family=ent._.family, |
|
|
122 |
) |
|
|
123 |
entities.append(d) |
|
|
124 |
|
|
|
125 |
df = pd.DataFrame.from_records(entities) |
|
|
126 |
``` |
|
|
127 |
|
|
|
128 |
This code is complete, and should run as is. |
|
|
129 |
|
|
|
130 |
We get the following result: |
|
|
131 |
|
|
|
132 |
| lexical_variant | label | negation | hypothesis | family | |
|
|
133 |
|:----------------|:-------------|----------|------------|--------| |
|
|
134 |
| COVID19 | covid | False | True | False | |
|
|
135 |
| respiratoires | respiratoire | True | False | False | |
|
|
136 |
| asthmatique | respiratoire | False | False | True | |
|
|
137 |
|
|
|
138 |
## Conclusion |
|
|
139 |
|
|
|
140 |
The qualifier pipes limits the number of false positives by detecting linguistic modulations such as negations or speculations. |
|
|
141 |
Go to the [full documentation](/pipes/qualifiers) for a complete presentation of the different pipes, |
|
|
142 |
their configuration options and validation performance. |