??? abstract "TLDR"
```{ .python .no-check }
import edsnlp
stream = edsnlp.data.from_pandas(df, converter="omop")
stream = stream.map_pipeline(nlp)
res = stream.to_pandas(converter="omop")
# or equivalently
edsnlp.data.to_pandas(stream, converter="omop")
```
We provide methods to read and write documents (raw or annotated) from and to Pandas DataFrames.
As an example, imagine that we have the following OMOP dataframe (we'll name it note_df
)
note_id | note_text | note_datetime |
---|---|---|
0 | Le patient est admis pour une pneumopathie... | 2021-10-23 |
::: edsnlp.data.pandas.from_pandas
options:
heading_level: 3
show_source: false
show_toc: false
show_bases: false
::: edsnlp.data.pandas.to_pandas
options:
heading_level: 3
show_source: false
show_toc: false
show_bases: false
If you have a dataframe with entities (e.g., note_nlp
in OMOP), you must join it with the dataframe containing the raw text (e.g., note
in OMOP) to obtain a single dataframe with the entities next to the raw text. For instance, the second note_nlp
dataframe that we will name note_nlp_df
.
note_nlp_id | note_id | start_char | end_char | note_nlp_source_value | lexical_variant |
---|---|---|---|---|---|
0 | 0 | 46 | 57 | disease | coronavirus |
1 | 0 | 77 | 88 | drug | paracétamol |
... | ... | ... | ... | ... | ... |
df = (
note_df
.set_index("note_id")
.join(
note_nlp_df
.set_index('note_id')
.groupby(level=0)
.apply(pd.DataFrame.to_dict, orient='records')
.rename("entities")
)
).reset_index()
note_id | note_text | note_datetime | entities |
---|---|---|---|
0 | Le patient... | 2021-10-23 | [{"note_nlp_id": 0, "start_char": 46, ...] |
... | ... | ... | ... |