??? abstract "TLDR"
```{ .python .no-check }
import edsnlp
stream = edsnlp.data.read_conll(path)
stream = stream.map_pipeline(nlp)
```
You can easily integrate CoNLL formatted files into your project by using EDS-NLP's CoNLL reader.
There are many CoNLL formats corresponding to different shared tasks, but one of the most common is the CoNLL-U format, which is used for dependency parsing. In CoNLL files, each line corresponds to a token and contains various columns with information about the token, such as its index, form, lemma, POS tag, and dependency relation.
EDS-NLP lets you specify the name of the columns
if they are different from the default CoNLL-U format. If the columns
parameter is unset, the reader looks for a comment containing # global.columns
to infer the column names. Otherwise, the columns are
ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC
A typical CoNLL file looks like this:
1 euh euh INTJ _ _ 5 discourse _ SpaceAfter=No
2 , , PUNCT _ _ 1 punct _ _
3 il lui PRON _ Gender=Masc|Number=Sing|Person=3|PronType=Prs 5 expl:subj _ _
...
::: edsnlp.data.conll.read_conll
options:
heading_level: 3
show_source: false
show_toc: false
show_bases: false