|
a |
|
b/demo/app.py |
|
|
1 |
from typing import Any |
|
|
2 |
|
|
|
3 |
import pandas as pd |
|
|
4 |
import streamlit as st |
|
|
5 |
from spacy import displacy |
|
|
6 |
|
|
|
7 |
import edsnlp |
|
|
8 |
import edsnlp.pipes as eds |
|
|
9 |
from edsnlp.utils.filter import filter_spans |
|
|
10 |
|
|
|
11 |
DEFAULT_TEXT = """\ |
|
|
12 |
Motif : |
|
|
13 |
Le patient est admis le 29 août pour des difficultés respiratoires. |
|
|
14 |
|
|
|
15 |
Antécédents familiaux : |
|
|
16 |
Le père du patient n'est pas asthmatique. |
|
|
17 |
|
|
|
18 |
HISTOIRE DE LA MALADIE |
|
|
19 |
Le patient dit avoir de la toux depuis trois jours. \ |
|
|
20 |
Elle a empiré jusqu'à nécessiter un passage aux urgences. |
|
|
21 |
A noter deux petits kystes bénins de 1 et 2cm biopsiés en 2005. |
|
|
22 |
|
|
|
23 |
Priorité: 2 (établie par l'IAO à l'entrée) |
|
|
24 |
|
|
|
25 |
adicaps ABCD0A12 et ABCD0A13 |
|
|
26 |
|
|
|
27 |
Conclusion |
|
|
28 |
Possible infection au coronavirus. Prescription de paracétomol pour la fièvre.\ |
|
|
29 |
""" |
|
|
30 |
|
|
|
31 |
REGEX = """ |
|
|
32 |
# RegEx and terms matcher |
|
|
33 |
nlp.add_pipe( |
|
|
34 |
eds.matcher( |
|
|
35 |
regex=dict(custom=r"{custom_regex}"), |
|
|
36 |
attr="NORM", |
|
|
37 |
), |
|
|
38 |
) |
|
|
39 |
""" |
|
|
40 |
|
|
|
41 |
CODE = """ |
|
|
42 |
import edsnlp, edsnlp.pipes as eds |
|
|
43 |
|
|
|
44 |
# Declare the pipeline |
|
|
45 |
nlp = edsnlp.blank("eds") |
|
|
46 |
|
|
|
47 |
# General-purpose components |
|
|
48 |
nlp.add_pipe(eds.normalizer()) |
|
|
49 |
nlp.add_pipe(eds.sentences()) |
|
|
50 |
{pipes} |
|
|
51 |
# Qualifier pipes |
|
|
52 |
nlp.add_pipe(eds.negation()) |
|
|
53 |
nlp.add_pipe(eds.family()) |
|
|
54 |
nlp.add_pipe(eds.hypothesis()) |
|
|
55 |
nlp.add_pipe(eds.rspeech()) |
|
|
56 |
|
|
|
57 |
# Define the note text |
|
|
58 |
text = {text} |
|
|
59 |
|
|
|
60 |
# Apply the pipeline |
|
|
61 |
doc = nlp(text) |
|
|
62 |
|
|
|
63 |
# Explore matched elements |
|
|
64 |
doc.ents |
|
|
65 |
""" |
|
|
66 |
|
|
|
67 |
PIPES = { |
|
|
68 |
"Drugs": "drugs", |
|
|
69 |
"CIM10": "cim10", |
|
|
70 |
"Dates": "dates", |
|
|
71 |
"Quantities": "quantities", |
|
|
72 |
"Charlson": "charlson", |
|
|
73 |
"SOFA": "sofa", |
|
|
74 |
"Elston & Ellis": "elston_ellis", |
|
|
75 |
"TNM": "tnm", |
|
|
76 |
"Priority": "emergency_priority", |
|
|
77 |
"CCMU": "emergency_ccmu", |
|
|
78 |
"GEMSA": "emergency_gemsa", |
|
|
79 |
"Covid": "covid", |
|
|
80 |
"Adicap": "adicap", |
|
|
81 |
"Diabetes": "diabetes", |
|
|
82 |
"Tobacco": "tobacco", |
|
|
83 |
"AIDS": "aids", |
|
|
84 |
"Lymphoma": "lymphoma", |
|
|
85 |
"Leukemia": "leukemia", |
|
|
86 |
"Solid Tumor": "solid_tumor", |
|
|
87 |
"CKD": "ckd", |
|
|
88 |
"Hemiplegia": "hemiplegia", |
|
|
89 |
"Liver Disease": "liver_disease", |
|
|
90 |
"Peptic Ulcer Disease": "peptic_ulcer_disease", |
|
|
91 |
"Connective Tissue Disease": "connective_tissue_disease", |
|
|
92 |
"COPD": "copd", |
|
|
93 |
"Dementia": "dementia", |
|
|
94 |
"Cerebrovascular Accident": "cerebrovascular_accident", |
|
|
95 |
"Peripheral Vascular Disease": "peripheral_vascular_disease", |
|
|
96 |
"Congestive Heart Failure": "congestive_heart_failure", |
|
|
97 |
"Myocardial Infarction": "myocardial_infarction", |
|
|
98 |
"Alcohol": "alcohol", |
|
|
99 |
} |
|
|
100 |
|
|
|
101 |
|
|
|
102 |
@st.cache_resource() |
|
|
103 |
def load_model(custom_regex: str, **enabled): |
|
|
104 |
pipes = [] |
|
|
105 |
|
|
|
106 |
# Declare the pipeline |
|
|
107 |
nlp = edsnlp.blank("eds") |
|
|
108 |
nlp.add_pipe(eds.normalizer()) |
|
|
109 |
nlp.add_pipe(eds.sentences()) |
|
|
110 |
|
|
|
111 |
for title, name in PIPES.items(): |
|
|
112 |
if name == "drugs": |
|
|
113 |
if enabled["drugs"]: |
|
|
114 |
if enabled["fuzzy_drugs"]: |
|
|
115 |
nlp.add_pipe(eds.drugs(term_matcher="simstring")) |
|
|
116 |
pipes.append('nlp.add_pipe(eds.drugs(term_matcher="simstring"))') |
|
|
117 |
else: |
|
|
118 |
nlp.add_pipe(eds.drugs()) |
|
|
119 |
pipes.append("nlp.add_pipe(eds.drugs())") |
|
|
120 |
|
|
|
121 |
else: |
|
|
122 |
if enabled[name]: |
|
|
123 |
nlp.add_pipe(f"eds.{name}") |
|
|
124 |
pipes.append(f"nlp.add_pipe(eds.{name}())") |
|
|
125 |
|
|
|
126 |
if pipes: |
|
|
127 |
pipes.insert(0, "# Entity extraction pipes") |
|
|
128 |
|
|
|
129 |
if custom_regex: |
|
|
130 |
nlp.add_pipe( |
|
|
131 |
eds.matcher( |
|
|
132 |
regex=dict(custom=custom_regex), |
|
|
133 |
attr="NORM", |
|
|
134 |
), |
|
|
135 |
) |
|
|
136 |
|
|
|
137 |
regex = REGEX.format(custom_regex=custom_regex) |
|
|
138 |
|
|
|
139 |
else: |
|
|
140 |
regex = "" |
|
|
141 |
|
|
|
142 |
nlp.add_pipe(eds.negation()) |
|
|
143 |
nlp.add_pipe(eds.family()) |
|
|
144 |
nlp.add_pipe(eds.hypothesis()) |
|
|
145 |
nlp.add_pipe(eds.rspeech()) |
|
|
146 |
|
|
|
147 |
return nlp, pipes, regex |
|
|
148 |
|
|
|
149 |
|
|
|
150 |
st.set_page_config( |
|
|
151 |
page_title="EDS-NLP Demo", |
|
|
152 |
page_icon="📄", |
|
|
153 |
) |
|
|
154 |
|
|
|
155 |
st.title("EDS-NLP") |
|
|
156 |
|
|
|
157 |
st.warning( |
|
|
158 |
"You should **not** put sensitive data in the example, as this application " |
|
|
159 |
"**is not secure**." |
|
|
160 |
) |
|
|
161 |
|
|
|
162 |
st.sidebar.header("About") |
|
|
163 |
st.sidebar.markdown( |
|
|
164 |
"EDS-NLP is a contributive effort maintained by AP-HP's Data Science team. " |
|
|
165 |
"Have a look at the " |
|
|
166 |
"[documentation](https://aphp.github.io/edsnlp/) for " |
|
|
167 |
"more information on the available components." |
|
|
168 |
) |
|
|
169 |
|
|
|
170 |
st.sidebar.header("Pipeline") |
|
|
171 |
st.sidebar.markdown( |
|
|
172 |
"This example runs a simplistic pipeline detecting a few synonyms for " |
|
|
173 |
"COVID-related entities.\n\n" |
|
|
174 |
"You can add or remove pre-defined pipeline components, and see how " |
|
|
175 |
"the pipeline reacts. You can also search for your own custom RegEx." |
|
|
176 |
) |
|
|
177 |
|
|
|
178 |
st.sidebar.header("Custom RegEx") |
|
|
179 |
st_custom_regex = st.sidebar.text_input( |
|
|
180 |
"Regular Expression:", |
|
|
181 |
r"asthmatique|difficult[ée]s?\srespiratoires?", |
|
|
182 |
) |
|
|
183 |
st.sidebar.markdown("The RegEx you defined above is detected under the `custom` label.") |
|
|
184 |
|
|
|
185 |
st.sidebar.subheader("Pipeline Components") |
|
|
186 |
st_pipes = {} |
|
|
187 |
|
|
|
188 |
st_pipes["cim10"] = st.sidebar.checkbox("CIM10 (loading can be slow)", value=False) |
|
|
189 |
st_drugs_container = st.sidebar.columns([1, 2]) |
|
|
190 |
st_pipes["drugs"] = st_drugs_container[0].checkbox("Drugs", value=True) |
|
|
191 |
st_fuzzy_drugs = st_drugs_container[1].checkbox( |
|
|
192 |
"Fuzzy drugs search", value=True, disabled=not st_pipes["drugs"] |
|
|
193 |
) |
|
|
194 |
for title, name in PIPES.items(): |
|
|
195 |
if name == "drugs" or name == "cim10": |
|
|
196 |
continue |
|
|
197 |
st_pipes[name] = st.sidebar.checkbox(title, value=True) |
|
|
198 |
st.sidebar.markdown( |
|
|
199 |
"These are just a few of the components provided out-of-the-box by EDS-NLP. " |
|
|
200 |
"See the [documentation](https://aphp.github.io/edsnlp/latest/pipes/) " |
|
|
201 |
"for detail." |
|
|
202 |
) |
|
|
203 |
|
|
|
204 |
model_load_state = st.info("Loading model...") |
|
|
205 |
|
|
|
206 |
nlp, pipes, regex = load_model( |
|
|
207 |
fuzzy_drugs=st_fuzzy_drugs, |
|
|
208 |
custom_regex=st_custom_regex, |
|
|
209 |
**st_pipes, |
|
|
210 |
) |
|
|
211 |
|
|
|
212 |
model_load_state.empty() |
|
|
213 |
|
|
|
214 |
st.header("Enter a text to analyse:") |
|
|
215 |
text = st.text_area( |
|
|
216 |
"Modify the following text and see the pipeline react :", |
|
|
217 |
DEFAULT_TEXT, |
|
|
218 |
height=375, |
|
|
219 |
) |
|
|
220 |
|
|
|
221 |
doc = nlp(text) |
|
|
222 |
doc.ents = filter_spans( |
|
|
223 |
(*doc.ents, *doc.spans.get("dates", []), *doc.spans.get("quantities", [])) |
|
|
224 |
) |
|
|
225 |
|
|
|
226 |
st.header("Visualisation") |
|
|
227 |
|
|
|
228 |
st.markdown( |
|
|
229 |
"The pipeline extracts simple entities using a dictionnary of RegEx (see the " |
|
|
230 |
"[Export the pipeline section](#export-the-pipeline) for more information)." |
|
|
231 |
) |
|
|
232 |
|
|
|
233 |
category20 = [ |
|
|
234 |
"#1f77b4", |
|
|
235 |
"#aec7e8", |
|
|
236 |
"#ff7f0e", |
|
|
237 |
"#ffbb78", |
|
|
238 |
"#2ca02c", |
|
|
239 |
"#98df8a", |
|
|
240 |
"#d62728", |
|
|
241 |
"#ff9896", |
|
|
242 |
"#9467bd", |
|
|
243 |
"#c5b0d5", |
|
|
244 |
"#8c564b", |
|
|
245 |
"#c49c94", |
|
|
246 |
"#e377c2", |
|
|
247 |
"#f7b6d2", |
|
|
248 |
"#7f7f7f", |
|
|
249 |
"#c7c7c7", |
|
|
250 |
"#bcbd22", |
|
|
251 |
"#dbdb8d", |
|
|
252 |
"#17becf", |
|
|
253 |
"#9edae5", |
|
|
254 |
] |
|
|
255 |
|
|
|
256 |
labels = [ |
|
|
257 |
"date", |
|
|
258 |
"covid", |
|
|
259 |
"drug", |
|
|
260 |
"cim10", |
|
|
261 |
"emergency_priority", |
|
|
262 |
"sofa", |
|
|
263 |
"charlson", |
|
|
264 |
"size", |
|
|
265 |
"weight", |
|
|
266 |
"adicap", |
|
|
267 |
] |
|
|
268 |
|
|
|
269 |
colors = {label: cat for label, cat in zip(labels, category20)} |
|
|
270 |
colors["custom"] = "linear-gradient(90deg, #aa9cfc, #fc9ce7)" |
|
|
271 |
options = { |
|
|
272 |
"colors": colors, |
|
|
273 |
} |
|
|
274 |
|
|
|
275 |
html = displacy.render(doc, style="ent", options=options) |
|
|
276 |
html = html.replace("line-height: 2.5;", "line-height: 2.25;") |
|
|
277 |
html = ( |
|
|
278 |
'<div style="padding: 10px; border: solid 2px; border-radius: 10px; ' |
|
|
279 |
f'border-color: #afc6e0;">{html}</div>' |
|
|
280 |
) |
|
|
281 |
st.write(html, unsafe_allow_html=True) |
|
|
282 |
|
|
|
283 |
data = [] |
|
|
284 |
for ent in doc.ents: |
|
|
285 |
d = dict( |
|
|
286 |
start=ent.start_char, |
|
|
287 |
end=ent.end_char, |
|
|
288 |
text=ent.text, |
|
|
289 |
label=ent.label_, |
|
|
290 |
normalized_value=str(ent._.value or ""), |
|
|
291 |
negation="YES" if ent._.negation else "NO", |
|
|
292 |
family="YES" if ent._.family else "NO", |
|
|
293 |
hypothesis="YES" if ent._.hypothesis else "NO", |
|
|
294 |
reported_speech="YES" if ent._.reported_speech else "NO", |
|
|
295 |
) |
|
|
296 |
|
|
|
297 |
data.append(d) |
|
|
298 |
|
|
|
299 |
st.header("Entity qualification") |
|
|
300 |
|
|
|
301 |
|
|
|
302 |
def color_qualifiers(val: Any) -> str: |
|
|
303 |
""" |
|
|
304 |
Add color to qualifiers. |
|
|
305 |
|
|
|
306 |
Parameters |
|
|
307 |
---------- |
|
|
308 |
val : Any |
|
|
309 |
DataFrame value |
|
|
310 |
|
|
|
311 |
Returns |
|
|
312 |
------- |
|
|
313 |
str |
|
|
314 |
style |
|
|
315 |
""" |
|
|
316 |
if val == "NO": |
|
|
317 |
return "color: #dc3545;" |
|
|
318 |
elif val == "YES": |
|
|
319 |
return "color: #198754;" |
|
|
320 |
return "" |
|
|
321 |
|
|
|
322 |
|
|
|
323 |
if data: |
|
|
324 |
df = pd.DataFrame.from_records(data) |
|
|
325 |
df.normalized_value = df.normalized_value.replace({"None": ""}) |
|
|
326 |
|
|
|
327 |
df = df.style.applymap(color_qualifiers) |
|
|
328 |
|
|
|
329 |
st.dataframe(df) |
|
|
330 |
|
|
|
331 |
else: |
|
|
332 |
st.markdown("You pipeline did not match any entity...") |
|
|
333 |
|
|
|
334 |
pipes_text = "" |
|
|
335 |
|
|
|
336 |
if pipes: |
|
|
337 |
pipes_text += "\n" + "\n".join(pipes) + "\n" |
|
|
338 |
if regex: |
|
|
339 |
pipes_text += regex |
|
|
340 |
|
|
|
341 |
code = CODE.format( |
|
|
342 |
pipes=pipes_text, |
|
|
343 |
text=f'"""\n{text}\n"""', |
|
|
344 |
) |
|
|
345 |
|
|
|
346 |
st.header("Export the pipeline") |
|
|
347 |
st.markdown( |
|
|
348 |
"The code below recreates the pipeline. Copy and paste it " |
|
|
349 |
"in a Jupyter Notebook to interact with it." |
|
|
350 |
) |
|
|
351 |
with st.expander("Show the runnable code"): |
|
|
352 |
st.markdown(f"```python\n{code}\n```\n\nThis code runs as is.") |