[7fc5df]: / tests / methods / test_crf_labeler.py

Download this file

161 lines (135 with data), 6.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from deidentify.methods.crf.crf_labeler import (SentenceFilterCRF, Token,
collapse_word_shape,
has_unmatched_bracket,
list_window,
liu_feature_extractor, ngrams,
word_shape)
def test_list_window():
sent = ['a', 'b', 'w', 'c', 'd']
assert list_window(sent, center=2, window=(0, 0)) == ['w']
assert list_window(sent, center=2, window=(1, 1)) == ['b', 'w', 'c']
assert list_window(sent, center=2, window=(2, 2)) == ['a', 'b', 'w', 'c', 'd']
assert list_window(sent, center=2, window=(3, 3)) == [None, 'a', 'b', 'w', 'c', 'd', None]
assert list_window(sent, center=0, window=(3, 3)) == [None, None, None, 'a', 'b', 'w', 'c']
assert list_window(sent, center=0, window=(3, 0)) == [None, None, None, 'a']
def test_ngrams():
tokens = ['a', 'b', 'w', 'c', 'd']
assert ngrams(tokens, N=1) == [('a',), ('b',), ('w',), ('c',), ('d',)]
assert ngrams(tokens, N=2) == [('a', 'b'), ('b', 'w'), ('w', 'c'), ('c', 'd')]
assert ngrams(tokens, N=3) == [('a', 'b', 'w'), ('b', 'w', 'c'), ('w', 'c', 'd')]
def test_unmatched_bracket():
sentence = [
Token(text='De', pos_tag='DET', label='O', ner_tag=None),
Token(text='patient', pos_tag='NOUN', label='O', ner_tag=None),
Token(text='Ingmar', pos_tag='NOUN', label='O', ner_tag=None),
Token(text='Koopal', pos_tag='PROPN', label='O', ner_tag=None),
Token(text='(', pos_tag='PUNCT', label='O', ner_tag=None),
]
assert has_unmatched_bracket(sentence)
sentence.append(Token(text=')', pos_tag='PUNCT', label='O', ner_tag=None))
assert not has_unmatched_bracket(sentence)
def test_word_shape():
assert word_shape('IngmAr-12a') == 'AaaaAa-##a'
assert word_shape('1234') == '####'
assert word_shape('ömar') == 'aaaa'
def test_collapse_word_shape():
assert collapse_word_shape('AaaaAa-##a') == 'AaAa-#a'
assert collapse_word_shape('####') == '#'
def test_liu_feature_extractor():
sentence = [
Token(text='De', pos_tag='DET', label='O', ner_tag=None),
Token(text='patient', pos_tag='NOUN', label='O', ner_tag=None),
Token(text='Ingmar', pos_tag='NOUN', label='O', ner_tag='PER'),
Token(text='Koopal', pos_tag='PROPN', label='O', ner_tag='PER'),
Token(text='(', pos_tag='PUNCT', label='O', ner_tag=None),
Token(text='t', pos_tag='NOUN', label='O', ner_tag=None),
Token(text=':', pos_tag='PUNCT', label='O', ner_tag=None),
Token(text='06', pos_tag='NUM', label='O', ner_tag=None),
Token(text='-', pos_tag='PUNCT', label='O', ner_tag=None),
Token(text='16769063', pos_tag='NUM', label='O', ner_tag=None),
Token(text=')', pos_tag='PUNCT', label='O', ner_tag=None),
]
assert liu_feature_extractor(sentence, 2) == {
'bow[-2:2].uni.0': 'de',
'bow[-2:2].uni.1': 'patient',
'bow[-2:2].uni.2': 'ingmar',
'bow[-2:2].uni.3': 'koopal',
'bow[-2:2].uni.4': '(',
'bow[-2:2].bi.0': 'de|patient',
'bow[-2:2].bi.1': 'patient|ingmar',
'bow[-2:2].bi.2': 'ingmar|koopal',
'bow[-2:2].bi.3': 'koopal|(',
'bow[-2:2].tri.0': 'de|patient|ingmar',
'bow[-2:2].tri.1': 'patient|ingmar|koopal',
'bow[-2:2].tri.2': 'ingmar|koopal|(',
'pos[-2:2].uni.0': 'DET',
'pos[-2:2].uni.1': 'NOUN',
'pos[-2:2].uni.2': 'NOUN',
'pos[-2:2].uni.3': 'PROPN',
'pos[-2:2].uni.4': 'PUNCT',
'pos[-2:2].bi.0': 'DET|NOUN',
'pos[-2:2].bi.1': 'NOUN|NOUN',
'pos[-2:2].bi.2': 'NOUN|PROPN',
'pos[-2:2].bi.3': 'PROPN|PUNCT',
'pos[-2:2].tri.0': 'DET|NOUN|NOUN',
'pos[-2:2].tri.1': 'NOUN|NOUN|PROPN',
'pos[-2:2].tri.2': 'NOUN|PROPN|PUNCT',
'bowpos.w0p-1': 'ingmar|NOUN',
'bowpos.w0p-1p0': 'ingmar|NOUN|NOUN',
'bowpos.w0p-1p0p1': 'ingmar|NOUN|NOUN|PROPN',
'bowpos.w0p-1p1': 'ingmar|NOUN|PROPN',
'bowpos.w0p0': 'ingmar|NOUN',
'bowpos.w0p0p1': 'ingmar|NOUN|PROPN',
'bowpos.w0p1': 'ingmar|PROPN',
'sent.end_mark': False,
'sent.len(sent)': 11,
'sent.has_unmatched_bracket': False,
'prefix[:1]': 'i',
'prefix[:2]': 'in',
'prefix[:3]': 'ing',
'prefix[:4]': 'ingm',
'prefix[:5]': 'ingma',
'suffix[-1:]': 'r',
'suffix[-2:]': 'ar',
'suffix[-3:]': 'mar',
'suffix[-4:]': 'gmar',
'suffix[-5:]': 'ngmar',
'word.contains_digit': False,
'word.has_digit_inside': False,
'word.has_punct_inside': False,
'word.has_upper_inside': False,
'word.is_ascii': True,
'word.isdigit()': False,
'word.istitle()': True,
'word.isupper()': False,
'word.ner_tag': 'PER',
'word.pos_tag': 'NOUN',
'shape.long': 'Aaaaaa',
'shape.short': 'Aa',
}
def test_crf_labeler_marginals():
sent1_features = [{'feat1': True, 'feat2': False}] * 4 # sentence will be ignored (see below)
sent1_labels = ['O', 'B-Name', 'O', 'O']
sent2_features = [{'feat1': False, 'feat2': True}] * 3
sent2_labels = ['B-Date', 'I-Date', 'O']
def ignore_sent(sent):
return sent[0]['feat1'] == True
X = [sent1_features, sent2_features]
y = [sent1_labels, sent2_labels]
crf = SentenceFilterCRF(ignored_label='O', ignore_sentence=ignore_sent)
crf.fit(X, y)
assert set(crf.classes_) == set(['O', 'B-Date', 'I-Date'])
y_pred = crf.predict_marginals([sent1_features, sent2_features])
# Should have two sentences
assert len(y_pred) == 2
assert len(y_pred[0]) == len(sent1_features), "Number of marginals should match len tokens"
assert len(y_pred[1]) == len(sent2_features), "Number of marginals should match len tokens"
# all tokens should have marginals for all classes
for sent in y_pred:
for token in sent:
assert set(token.keys()) == set(crf.classes_)
# First sentence (ignored) should marginal=1 for the ignored_label.
ignored_marginals = {'O': 1, 'B-Date': 0, 'I-Date': 0}
assert y_pred[0] == [ignored_marginals] * 4
# Second sentence should have non-zero marginals for the other classes
assert y_pred[1] != [ignored_marginals] * 3