Diff of /scripts/benchmark.py [000000] .. [7fc5df]

Switch to unified view

a b/scripts/benchmark.py
1
import argparse
2
from timeit import default_timer as timer
3
from typing import List
4
5
import numpy as np
6
import pandas as pd
7
import torch
8
from flair.datasets import CONLL_03_DUTCH
9
from loguru import logger
10
from tqdm import tqdm
11
12
from deidentify.base import Document
13
from deidentify.taggers import CRFTagger, DeduceTagger, FlairTagger, TextTagger
14
from deidentify.tokenizer import TokenizerFactory
15
16
N_REPETITIONS = 5
17
N_SENTS = 5000
18
19
20
def load_data():
21
    corpus = CONLL_03_DUTCH()
22
    sentences = corpus.train[:N_SENTS]
23
    tokens = sum(len(sent) for sent in sentences)
24
    docs = [Document(name='', text=sent.to_plain_string(), annotations=[]) for sent in sentences]
25
    return docs, tokens
26
27
28
def benchmark_tagger(tagger: TextTagger, docs: List[Document], num_tokens: int):
29
    durations = []
30
31
    for _ in tqdm(range(0, N_REPETITIONS), desc='Repetitions'):
32
        start = timer()
33
        tagger.annotate(docs)
34
        end = timer()
35
        durations.append(end - start)
36
37
        if isinstance(tagger, FlairTagger) and torch.cuda.is_available():
38
            torch.cuda.empty_cache()
39
40
    return {
41
        'mean': np.mean(durations),
42
        'std': np.std(durations),
43
        'tokens/s': num_tokens / np.mean(durations),
44
        'docs/s': len(docs) / np.mean(durations),
45
        'num_docs': len(docs),
46
        'num_tokens': num_tokens
47
    }
48
49
50
def main(args):
51
    logger.info('Load data...')
52
    documents, num_tokens = load_data()
53
54
    logger.info('Initialize taggers...')
55
    tokenizer_crf = TokenizerFactory().tokenizer(corpus='ons', disable=())
56
    tokenizer_bilstm = TokenizerFactory().tokenizer(corpus='ons', disable=("tagger", "ner"))
57
58
    taggers = [
59
        ('DEDUCE', DeduceTagger(verbose=True)),
60
        ('CRF', CRFTagger(
61
            model='model_crf_ons_tuned-v0.1.0',
62
            tokenizer=tokenizer_crf,
63
            verbose=True
64
        )),
65
        ('BiLSTM-CRF (large)', FlairTagger(
66
            model='model_bilstmcrf_ons_large-v0.1.0',
67
            tokenizer=tokenizer_bilstm,
68
            mini_batch_size=args.bilstmcrf_large_batch_size,
69
            verbose=True
70
        )),
71
        ('BiLSTM-CRF (fast)', FlairTagger(
72
            model='model_bilstmcrf_ons_fast-v0.1.0',
73
            tokenizer=tokenizer_bilstm,
74
            mini_batch_size=args.bilstmcrf_fast_batch_size,
75
            verbose=True
76
        ))
77
    ]
78
79
    benchmark_results = []
80
    tagger_names = []
81
    for tagger_name, tagger in taggers:
82
        logger.info(f'Benchmark inference for tagger: {tagger_name}')
83
        scores = benchmark_tagger(tagger, documents, num_tokens)
84
        benchmark_results.append(scores)
85
        tagger_names.append(tagger_name)
86
87
    df = pd.DataFrame(data=benchmark_results, index=tagger_names)
88
    df.to_csv(f'{args.benchmark_name}.csv')
89
    logger.info('\n{}', df)
90
91
92
def arg_parser():
93
    parser = argparse.ArgumentParser()
94
    parser.add_argument("benchmark_name", type=str, help="Name of the benchmark.")
95
    parser.add_argument(
96
        "--bilstmcrf_large_batch_size",
97
        type=int,
98
        help="Batch size to use with the large model.",
99
        default=256
100
    )
101
    parser.add_argument(
102
        "--bilstmcrf_fast_batch_size",
103
        type=int,
104
        help="Batch size to use with the fast model.",
105
        default=256
106
    )
107
    return parser.parse_args()
108
109
110
if __name__ == '__main__':
111
    main(arg_parser())