|
a |
|
b/scripts/benchmark.py |
|
|
1 |
import argparse |
|
|
2 |
from timeit import default_timer as timer |
|
|
3 |
from typing import List |
|
|
4 |
|
|
|
5 |
import numpy as np |
|
|
6 |
import pandas as pd |
|
|
7 |
import torch |
|
|
8 |
from flair.datasets import CONLL_03_DUTCH |
|
|
9 |
from loguru import logger |
|
|
10 |
from tqdm import tqdm |
|
|
11 |
|
|
|
12 |
from deidentify.base import Document |
|
|
13 |
from deidentify.taggers import CRFTagger, DeduceTagger, FlairTagger, TextTagger |
|
|
14 |
from deidentify.tokenizer import TokenizerFactory |
|
|
15 |
|
|
|
16 |
N_REPETITIONS = 5 |
|
|
17 |
N_SENTS = 5000 |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
def load_data(): |
|
|
21 |
corpus = CONLL_03_DUTCH() |
|
|
22 |
sentences = corpus.train[:N_SENTS] |
|
|
23 |
tokens = sum(len(sent) for sent in sentences) |
|
|
24 |
docs = [Document(name='', text=sent.to_plain_string(), annotations=[]) for sent in sentences] |
|
|
25 |
return docs, tokens |
|
|
26 |
|
|
|
27 |
|
|
|
28 |
def benchmark_tagger(tagger: TextTagger, docs: List[Document], num_tokens: int): |
|
|
29 |
durations = [] |
|
|
30 |
|
|
|
31 |
for _ in tqdm(range(0, N_REPETITIONS), desc='Repetitions'): |
|
|
32 |
start = timer() |
|
|
33 |
tagger.annotate(docs) |
|
|
34 |
end = timer() |
|
|
35 |
durations.append(end - start) |
|
|
36 |
|
|
|
37 |
if isinstance(tagger, FlairTagger) and torch.cuda.is_available(): |
|
|
38 |
torch.cuda.empty_cache() |
|
|
39 |
|
|
|
40 |
return { |
|
|
41 |
'mean': np.mean(durations), |
|
|
42 |
'std': np.std(durations), |
|
|
43 |
'tokens/s': num_tokens / np.mean(durations), |
|
|
44 |
'docs/s': len(docs) / np.mean(durations), |
|
|
45 |
'num_docs': len(docs), |
|
|
46 |
'num_tokens': num_tokens |
|
|
47 |
} |
|
|
48 |
|
|
|
49 |
|
|
|
50 |
def main(args): |
|
|
51 |
logger.info('Load data...') |
|
|
52 |
documents, num_tokens = load_data() |
|
|
53 |
|
|
|
54 |
logger.info('Initialize taggers...') |
|
|
55 |
tokenizer_crf = TokenizerFactory().tokenizer(corpus='ons', disable=()) |
|
|
56 |
tokenizer_bilstm = TokenizerFactory().tokenizer(corpus='ons', disable=("tagger", "ner")) |
|
|
57 |
|
|
|
58 |
taggers = [ |
|
|
59 |
('DEDUCE', DeduceTagger(verbose=True)), |
|
|
60 |
('CRF', CRFTagger( |
|
|
61 |
model='model_crf_ons_tuned-v0.1.0', |
|
|
62 |
tokenizer=tokenizer_crf, |
|
|
63 |
verbose=True |
|
|
64 |
)), |
|
|
65 |
('BiLSTM-CRF (large)', FlairTagger( |
|
|
66 |
model='model_bilstmcrf_ons_large-v0.1.0', |
|
|
67 |
tokenizer=tokenizer_bilstm, |
|
|
68 |
mini_batch_size=args.bilstmcrf_large_batch_size, |
|
|
69 |
verbose=True |
|
|
70 |
)), |
|
|
71 |
('BiLSTM-CRF (fast)', FlairTagger( |
|
|
72 |
model='model_bilstmcrf_ons_fast-v0.1.0', |
|
|
73 |
tokenizer=tokenizer_bilstm, |
|
|
74 |
mini_batch_size=args.bilstmcrf_fast_batch_size, |
|
|
75 |
verbose=True |
|
|
76 |
)) |
|
|
77 |
] |
|
|
78 |
|
|
|
79 |
benchmark_results = [] |
|
|
80 |
tagger_names = [] |
|
|
81 |
for tagger_name, tagger in taggers: |
|
|
82 |
logger.info(f'Benchmark inference for tagger: {tagger_name}') |
|
|
83 |
scores = benchmark_tagger(tagger, documents, num_tokens) |
|
|
84 |
benchmark_results.append(scores) |
|
|
85 |
tagger_names.append(tagger_name) |
|
|
86 |
|
|
|
87 |
df = pd.DataFrame(data=benchmark_results, index=tagger_names) |
|
|
88 |
df.to_csv(f'{args.benchmark_name}.csv') |
|
|
89 |
logger.info('\n{}', df) |
|
|
90 |
|
|
|
91 |
|
|
|
92 |
def arg_parser(): |
|
|
93 |
parser = argparse.ArgumentParser() |
|
|
94 |
parser.add_argument("benchmark_name", type=str, help="Name of the benchmark.") |
|
|
95 |
parser.add_argument( |
|
|
96 |
"--bilstmcrf_large_batch_size", |
|
|
97 |
type=int, |
|
|
98 |
help="Batch size to use with the large model.", |
|
|
99 |
default=256 |
|
|
100 |
) |
|
|
101 |
parser.add_argument( |
|
|
102 |
"--bilstmcrf_fast_batch_size", |
|
|
103 |
type=int, |
|
|
104 |
help="Batch size to use with the fast model.", |
|
|
105 |
default=256 |
|
|
106 |
) |
|
|
107 |
return parser.parse_args() |
|
|
108 |
|
|
|
109 |
|
|
|
110 |
if __name__ == '__main__': |
|
|
111 |
main(arg_parser()) |