[d6904d]: / app / apis / dl_los_pipeline.py

Download this file

314 lines (294 with data), 11.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import math
import pathlib
import pickle
import random
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import torch.nn.utils.rnn as rnn_utils
from sklearn.model_selection import (
KFold,
StratifiedKFold,
StratifiedShuffleSplit,
train_test_split,
)
from sklearn.tree import DecisionTreeRegressor
from torch import nn
from torch.autograd import Variable
from torch.utils import data
from torch.utils.data import (
ConcatDataset,
DataLoader,
Dataset,
Subset,
SubsetRandomSampler,
TensorDataset,
random_split,
)
from app.core.evaluation import eval_metrics
from app.core.utils import init_random
from app.datasets import get_dataset, load_data
from app.datasets.dl import Dataset
from app.datasets.ml import flatten_dataset, numpy_dataset
from app.models import (
build_model_from_cfg,
get_multi_task_loss,
predict_all_visits_bce_loss,
predict_all_visits_mse_loss,
)
from app.utils import perflog
def train_epoch(model, device, dataloader, loss_fn, optimizer, info):
train_loss = []
model.train()
for step, data in enumerate(dataloader):
batch_x, batch_y, batch_x_lab_length = data
batch_x, batch_y, batch_x_lab_length = (
batch_x.float().to(device),
batch_y.float().to(device),
batch_x_lab_length.float().to(device),
)
batch_y = batch_y[:, :, 1] # 0: outcome, 1: los
batch_y = batch_y.unsqueeze(-1)
optimizer.zero_grad()
output = model(batch_x, device, info)
loss = loss_fn(output, batch_y, batch_x_lab_length)
train_loss.append(loss.item())
loss.backward()
optimizer.step()
return np.array(train_loss).mean()
def val_epoch(model, device, dataloader, loss_fn, los_statistics, info):
"""
val / test
"""
val_loss = []
y_pred = []
y_true = []
model.eval()
with torch.no_grad():
for step, data in enumerate(dataloader):
batch_x, batch_y, batch_x_lab_length = data
batch_x, batch_y, batch_x_lab_length = (
batch_x.float().to(device),
batch_y.float().to(device),
batch_x_lab_length.float().to(device),
)
batch_y = batch_y[:, :, 1] # 0: outcome, 1: los
batch_y = batch_y.unsqueeze(-1)
output = model(batch_x, device, info)
loss = loss_fn(output, batch_y, batch_x_lab_length)
val_loss.append(loss.item())
output = torch.squeeze(output)
batch_y = torch.squeeze(batch_y)
for i in range(len(batch_y)):
y_pred.extend(output[i][: batch_x_lab_length[i].long()].tolist())
y_true.extend(batch_y[i][: batch_x_lab_length[i].long()].tolist())
y_pred = np.array(y_pred)
y_true = np.array(y_true)
y_pred = reverse_zscore_los(y_pred, los_statistics)
y_true = reverse_zscore_los(y_true, los_statistics)
evaluation_scores = eval_metrics.print_metrics_regression(y_true, y_pred, verbose=0)
return np.array(val_loss).mean(), evaluation_scores
def calculate_los_statistics(dataset, train_idx):
"""calculate los's mean/std"""
# y = dataset.y[train_idx][:, :, 1]
y = []
for i in train_idx:
# print(dataset.y[i][:dataset.x_lab_length[i].long()])
for j in range(dataset.x_lab_length[i]):
y.append(dataset.y[i][j][1])
# y.extend(dataset.y[i][:dataset.x_lab_length[i].long()].tolist())
y = np.array(y)
mean, std = y.mean(), y.std()
los_statistics = {"los_mean": mean, "los_std": std}
return los_statistics
def zscore_los(dataset, los_statistics):
"""zscore scale y"""
dataset.y[:, :, 1] = (
dataset.y[:, :, 1] - los_statistics["los_mean"]
) / los_statistics["los_std"]
return dataset
def reverse_zscore_los(y, los_statistics):
"""reverse zscore y"""
y = y * los_statistics["los_std"] + los_statistics["los_mean"]
return y
def start_pipeline(cfg, device):
info = {"config": cfg, "epoch": 0}
val_info = {"config": cfg, "epoch": cfg.epochs}
dataset_type, method, num_folds, train_fold = (
cfg.dataset,
cfg.model,
cfg.num_folds,
cfg.train_fold,
)
# Load data
x, y, x_lab_length = load_data(dataset_type)
dataset = get_dataset(x, y, x_lab_length)
all_history = {}
test_performance = {
"test_loss": [],
"test_mad": [],
"test_mse": [],
"test_mape": [],
"test_rmse": [],
}
kfold_test = StratifiedKFold(
n_splits=num_folds, shuffle=True, random_state=cfg.dataset_split_seed
)
skf = kfold_test.split(np.arange(len(dataset)), dataset.y[:, 0, 0])
for fold_test in range(train_fold):
x, y, x_lab_length = load_data(dataset_type)
dataset = get_dataset(x, y, x_lab_length)
train_and_val_idx, test_idx = next(skf)
print("====== Test Fold {} ======".format(fold_test + 1))
sss = StratifiedShuffleSplit(
n_splits=1,
test_size=1 / (num_folds - 1),
random_state=cfg.dataset_split_seed,
)
sub_dataset = Dataset(
dataset.x[train_and_val_idx],
dataset.y[train_and_val_idx],
dataset.x_lab_length[train_and_val_idx],
)
all_history["test_fold_{}".format(fold_test + 1)] = {}
history = {
"train_loss": [],
"val_loss": [],
"val_mad": [],
"val_mse": [],
"val_mape": [],
"val_rmse": [],
}
train_idx, val_idx = next(
sss.split(np.arange(len(train_and_val_idx)), sub_dataset.y[:, 0, 0])
)
# apply z-score transform los
los_statistics = calculate_los_statistics(sub_dataset, train_idx)
print(los_statistics)
sub_dataset = zscore_los(sub_dataset, los_statistics)
dataset = zscore_los(dataset, los_statistics)
test_sampler = SubsetRandomSampler(test_idx)
test_loader = DataLoader(
dataset,
batch_size=cfg.batch_size,
sampler=test_sampler,
num_workers=0,
)
train_sampler = SubsetRandomSampler(train_idx)
val_sampler = SubsetRandomSampler(val_idx)
train_loader = DataLoader(
sub_dataset,
batch_size=cfg.batch_size,
sampler=train_sampler,
num_workers=0,
)
val_loader = DataLoader(
sub_dataset,
batch_size=cfg.batch_size,
sampler=val_sampler,
num_workers=0,
)
for seed in cfg.model_init_seed:
init_random(seed)
model = build_model_from_cfg(cfg, device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
criterion = predict_all_visits_mse_loss
best_val_performance = 1e8
if cfg.train == True:
for epoch in range(cfg.epochs):
info["epoch"] = epoch + 1
train_loss = train_epoch(
model,
device,
train_loader,
criterion,
optimizer,
info=info,
)
val_loss, val_evaluation_scores = val_epoch(
model,
device,
val_loader,
criterion,
los_statistics,
info=val_info,
)
# save performance history on validation set
print(
"Epoch:{}/{} AVG Training Loss:{:.3f} AVG Val Loss:{:.3f}".format(
epoch + 1, cfg.epochs, train_loss, val_loss
)
)
history["train_loss"].append(train_loss)
history["val_loss"].append(val_loss)
history["val_mad"].append(val_evaluation_scores["mad"])
history["val_mse"].append(val_evaluation_scores["mse"])
history["val_mape"].append(val_evaluation_scores["mape"])
history["val_rmse"].append(val_evaluation_scores["rmse"])
# if mad is lower, than set the best mad, save the model, and test it on the test set
if val_evaluation_scores["mad"] < best_val_performance:
best_val_performance = val_evaluation_scores["mad"]
torch.save(
model.state_dict(),
f"checkpoints/{cfg.name}_{fold_test + 1}_seed{seed}.pth",
)
print("[best!!]", epoch)
es = 0
else:
es += 1
if es >= 20:
print(f"Early stopping break at epoch {epoch}")
break
print(
f"Best performance on val set {fold_test+1}: \
MAE = {best_val_performance}"
)
model = build_model_from_cfg(cfg, device)
model.load_state_dict(
torch.load(
f"checkpoints/{cfg.name}_{fold_test + 1}_seed{seed}.pth",
map_location=torch.device("cpu"),
)
)
test_loss, test_evaluation_scores = val_epoch(
model,
device,
test_loader,
criterion,
los_statistics,
info=val_info,
)
test_performance["test_loss"].append(test_loss)
test_performance["test_mad"].append(test_evaluation_scores["mad"])
test_performance["test_mse"].append(test_evaluation_scores["mse"])
test_performance["test_mape"].append(test_evaluation_scores["mape"])
test_performance["test_rmse"].append(test_evaluation_scores["rmse"])
print(
f"Performance on test set {fold_test+1}: \
MAE = {test_evaluation_scores['mad']}, \
MSE = {test_evaluation_scores['mse']}, \
MAPE = {test_evaluation_scores['mape']}, \
RMSE = {test_evaluation_scores['rmse']}"
)
all_history["test_fold_{}".format(fold_test + 1)] = history
# Calculate average performance on 10-fold test set
test_mad_list = np.array(test_performance["test_mad"])
test_mse_list = np.array(test_performance["test_mse"])
test_mape_list = np.array(test_performance["test_mape"])
test_rmse_list = np.array(test_performance["test_rmse"])
print("====================== TEST RESULT ======================")
print("MAE: {:.3f} ({:.3f})".format(test_mad_list.mean(), test_mad_list.std()))
print("MSE: {:.3f} ({:.3f})".format(test_mse_list.mean(), test_mse_list.std()))
print("MAPE: {:.3f} ({:.3f})".format(test_mape_list.mean(), test_mape_list.std()))
print("RMSE: {:.3f} ({:.3f})".format(test_rmse_list.mean(), test_rmse_list.std()))
print("=========================================================")
perflog.process_and_upload_performance(
cfg,
mae=test_mad_list,
mse=test_mse_list,
rmse=test_rmse_list,
mape=test_mape_list,
verbose=1,
upload=cfg.db,
)