|
a |
|
b/draw.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import numpy as np\n", |
|
|
10 |
"import pandas as pd\n", |
|
|
11 |
"from sklearn.calibration import calibration_curve\n", |
|
|
12 |
"from sklearn.metrics import roc_curve, precision_recall_curve\n", |
|
|
13 |
"import torch\n", |
|
|
14 |
"from sklearn.decomposition import PCA\n", |
|
|
15 |
"from sklearn.manifold import TSNE\n", |
|
|
16 |
"# matplotlib\n", |
|
|
17 |
"import matplotlib.pyplot as plt\n", |
|
|
18 |
"import matplotlib.lines as mlines\n", |
|
|
19 |
"import matplotlib.transforms as mtransfor\n", |
|
|
20 |
"from matplotlib.ticker import FuncFormatter\n", |
|
|
21 |
"import seaborn as sns\n", |
|
|
22 |
"\n", |
|
|
23 |
"plt.style.use('default')\n", |
|
|
24 |
"plt.rcParams['axes.facecolor']='white'\n", |
|
|
25 |
"plt.rcParams.update({\"axes.grid\" : True, \"grid.color\": \"gainsboro\"})\n", |
|
|
26 |
"plt.rcParams['legend.frameon']=True\n", |
|
|
27 |
"plt.rcParams['legend.facecolor']='white'\n", |
|
|
28 |
"plt.rcParams['legend.edgecolor']='grey'\n", |
|
|
29 |
"plt.rcParams[\"axes.edgecolor\"] = \"black\"\n", |
|
|
30 |
"plt.rcParams[\"axes.linewidth\"] = 1" |
|
|
31 |
] |
|
|
32 |
}, |
|
|
33 |
{ |
|
|
34 |
"cell_type": "markdown", |
|
|
35 |
"metadata": {}, |
|
|
36 |
"source": [ |
|
|
37 |
"## Read models' outcome prediction result" |
|
|
38 |
] |
|
|
39 |
}, |
|
|
40 |
{ |
|
|
41 |
"cell_type": "code", |
|
|
42 |
"execution_count": null, |
|
|
43 |
"metadata": {}, |
|
|
44 |
"outputs": [], |
|
|
45 |
"source": [ |
|
|
46 |
"tj_adacare = pd.read_pickle('./saved_pkl/tongji_adacare_outcome.pkl')\n", |
|
|
47 |
"tj_retain = pd.read_pickle('./saved_pkl/tongji_retain_outcome.pkl')\n", |
|
|
48 |
"tj_tcn = pd.read_pickle('./saved_pkl/tongji_tcn_outcome.pkl')\n", |
|
|
49 |
"\n", |
|
|
50 |
"hm_concare = pd.read_pickle('./saved_pkl/hm_concare_outcome.pkl')\n", |
|
|
51 |
"hm_tcn = pd.read_pickle('./saved_pkl/hm_tcn_outcome.pkl')\n", |
|
|
52 |
"hm_rnn = pd.read_pickle('./saved_pkl/hm_rnn_outcome.pkl')\n", |
|
|
53 |
"\n", |
|
|
54 |
"tj_adacare_outcome_true, tj_adacare_outcome_pred = tj_adacare['outcome_true'], tj_adacare['outcome_pred']\n", |
|
|
55 |
"tj_retain_outcome_true, tj_retain_outcome_pred = tj_retain['outcome_true'], tj_retain['outcome_pred']\n", |
|
|
56 |
"tj_tcn_outcome_true, tj_tcn_outcome_pred = tj_tcn['outcome_true'], tj_tcn['outcome_pred']\n", |
|
|
57 |
"\n", |
|
|
58 |
"hm_concare_outcome_true, hm_concare_outcome_pred = hm_concare['outcome_true'], hm_concare['outcome_pred']\n", |
|
|
59 |
"hm_tcn_outcome_true, hm_tcn_outcome_pred = hm_tcn['outcome_true'], hm_tcn['outcome_pred']\n", |
|
|
60 |
"hm_rnn_outcome_true, hm_rnn_outcome_pred = hm_rnn['outcome_true'], hm_rnn['outcome_pred']" |
|
|
61 |
] |
|
|
62 |
}, |
|
|
63 |
{ |
|
|
64 |
"cell_type": "markdown", |
|
|
65 |
"metadata": {}, |
|
|
66 |
"source": [ |
|
|
67 |
"## ROC Plot" |
|
|
68 |
] |
|
|
69 |
}, |
|
|
70 |
{ |
|
|
71 |
"cell_type": "code", |
|
|
72 |
"execution_count": null, |
|
|
73 |
"metadata": {}, |
|
|
74 |
"outputs": [], |
|
|
75 |
"source": [ |
|
|
76 |
"tj_random_probs = [0 for _ in range(len(tj_adacare_outcome_true))]\n", |
|
|
77 |
"tj_p_fpr, tj_p_tpr, _ = roc_curve(tj_adacare_outcome_true, tj_random_probs, pos_label=1)\n", |
|
|
78 |
"\n", |
|
|
79 |
"hm_random_probs = [0 for _ in range(len(hm_tcn_outcome_true))]\n", |
|
|
80 |
"hm_p_fpr, hm_p_tpr, _ = roc_curve(hm_tcn_outcome_true, hm_random_probs, pos_label=1)" |
|
|
81 |
] |
|
|
82 |
}, |
|
|
83 |
{ |
|
|
84 |
"cell_type": "code", |
|
|
85 |
"execution_count": null, |
|
|
86 |
"metadata": {}, |
|
|
87 |
"outputs": [], |
|
|
88 |
"source": [ |
|
|
89 |
"# [TJH] plot roc curves\n", |
|
|
90 |
"\n", |
|
|
91 |
"tj_adacare_fpr, tj_adacare_tpr, thresh1 = roc_curve(tj_adacare_outcome_true, tj_adacare_outcome_pred, pos_label=1)\n", |
|
|
92 |
"tj_retain_fpr, tj_retain_tpr, thresh2 = roc_curve(tj_retain_outcome_true, tj_retain_outcome_pred, pos_label=1)\n", |
|
|
93 |
"tj_tcn_fpr, tj_tcn_tpr, thresh3 = roc_curve(tj_tcn_outcome_true, tj_tcn_outcome_pred, pos_label=1)\n", |
|
|
94 |
"\n", |
|
|
95 |
"plt.plot(tj_p_fpr, tj_p_tpr, linestyle='-.', color='grey', label='Random')\n", |
|
|
96 |
"plt.plot(tj_adacare_fpr, tj_adacare_tpr, linestyle='dashed',color='orange', label='AdaCare')\n", |
|
|
97 |
"plt.plot(tj_retain_fpr, tj_retain_tpr, linestyle='solid',color='dodgerblue', label='RETAIN')\n", |
|
|
98 |
"plt.plot(tj_tcn_fpr, tj_tcn_tpr, linestyle='dotted',color='violet', label='TCN')\n", |
|
|
99 |
"\n", |
|
|
100 |
"# # title\n", |
|
|
101 |
"# plt.title('ROC curve')\n", |
|
|
102 |
"# x label\n", |
|
|
103 |
"plt.xlabel('False Positive Rate')\n", |
|
|
104 |
"# y label\n", |
|
|
105 |
"plt.ylabel('True Positive Rate')\n", |
|
|
106 |
"\n", |
|
|
107 |
"plt.legend(loc='lower right')\n", |
|
|
108 |
"\n", |
|
|
109 |
"plt.savefig('tjh_roc.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")\n", |
|
|
110 |
"plt.show();" |
|
|
111 |
] |
|
|
112 |
}, |
|
|
113 |
{ |
|
|
114 |
"cell_type": "code", |
|
|
115 |
"execution_count": null, |
|
|
116 |
"metadata": {}, |
|
|
117 |
"outputs": [], |
|
|
118 |
"source": [ |
|
|
119 |
"# [CDSL] plot roc curves\n", |
|
|
120 |
"\n", |
|
|
121 |
"hm_concare_fpr, hm_concare_tpr, thresh1 = roc_curve(hm_concare_outcome_true, hm_concare_outcome_pred, pos_label=1)\n", |
|
|
122 |
"hm_tcn_fpr, hm_tcn_tpr, thresh2 = roc_curve(hm_tcn_outcome_true, hm_tcn_outcome_pred, pos_label=1)\n", |
|
|
123 |
"hm_rnn_fpr, hm_rnn_tpr, thresh3 = roc_curve(hm_rnn_outcome_true, hm_rnn_outcome_pred, pos_label=1)\n", |
|
|
124 |
"\n", |
|
|
125 |
"plt.plot(hm_p_fpr, hm_p_tpr, linestyle='-.', color='grey', label='Random')\n", |
|
|
126 |
"plt.plot(hm_concare_fpr, hm_concare_tpr, linestyle='solid',color='dodgerblue', label='ConCare')\n", |
|
|
127 |
"plt.plot(hm_tcn_fpr, hm_tcn_tpr, linestyle='dotted',color='violet', label='TCN')\n", |
|
|
128 |
"plt.plot(hm_rnn_fpr, hm_rnn_tpr, linestyle='dashed',color='orange', label='RNN')\n", |
|
|
129 |
"\n", |
|
|
130 |
"# # title\n", |
|
|
131 |
"# plt.title('ROC curve')\n", |
|
|
132 |
"# x label\n", |
|
|
133 |
"plt.xlabel('False positive rate')\n", |
|
|
134 |
"# y label\n", |
|
|
135 |
"plt.ylabel('True positive rate')\n", |
|
|
136 |
"\n", |
|
|
137 |
"plt.legend(loc='lower right')\n", |
|
|
138 |
"plt.savefig('cdsl_roc.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")\n", |
|
|
139 |
"plt.show();" |
|
|
140 |
] |
|
|
141 |
}, |
|
|
142 |
{ |
|
|
143 |
"cell_type": "markdown", |
|
|
144 |
"metadata": {}, |
|
|
145 |
"source": [ |
|
|
146 |
"## PRC Plot" |
|
|
147 |
] |
|
|
148 |
}, |
|
|
149 |
{ |
|
|
150 |
"cell_type": "code", |
|
|
151 |
"execution_count": null, |
|
|
152 |
"metadata": {}, |
|
|
153 |
"outputs": [], |
|
|
154 |
"source": [ |
|
|
155 |
"# [TJH] plot precision-recall curves\n", |
|
|
156 |
"\n", |
|
|
157 |
"tj_adacare_precision, tj_adacare_recall, thresh1 = precision_recall_curve(tj_adacare_outcome_true, tj_adacare_outcome_pred, pos_label=1)\n", |
|
|
158 |
"tj_retain_precision, tj_retain_recall, thresh2 = precision_recall_curve(tj_retain_outcome_true, tj_retain_outcome_pred, pos_label=1)\n", |
|
|
159 |
"tj_tcn_precision, tj_tcn_recall, thresh3 = precision_recall_curve(tj_tcn_outcome_true, tj_tcn_outcome_pred, pos_label=1)\n", |
|
|
160 |
"\n", |
|
|
161 |
"plt.plot(tj_adacare_precision, tj_adacare_recall, linestyle='dashed',color='orange', label='AdaCare')\n", |
|
|
162 |
"plt.plot(tj_retain_precision, tj_retain_recall, linestyle='solid',color='dodgerblue', label='RETAIN')\n", |
|
|
163 |
"plt.plot(tj_tcn_precision, tj_tcn_recall, linestyle='dotted',color='violet', label='TCN')\n", |
|
|
164 |
"\n", |
|
|
165 |
"# # title\n", |
|
|
166 |
"# plt.title('PRC curve')\n", |
|
|
167 |
"# x label\n", |
|
|
168 |
"plt.xlabel('Recall')\n", |
|
|
169 |
"# y label\n", |
|
|
170 |
"plt.ylabel('Precision')\n", |
|
|
171 |
"\n", |
|
|
172 |
"plt.legend(loc='lower left')\n", |
|
|
173 |
"plt.savefig('tjh_prc.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")\n", |
|
|
174 |
"plt.show();" |
|
|
175 |
] |
|
|
176 |
}, |
|
|
177 |
{ |
|
|
178 |
"cell_type": "code", |
|
|
179 |
"execution_count": null, |
|
|
180 |
"metadata": {}, |
|
|
181 |
"outputs": [], |
|
|
182 |
"source": [ |
|
|
183 |
"# [CDSL] plot precision-recall curves\n", |
|
|
184 |
"\n", |
|
|
185 |
"hm_concare_precision, hm_concare_recall, thresh1 = precision_recall_curve(hm_concare_outcome_true, hm_concare_outcome_pred, pos_label=1)\n", |
|
|
186 |
"hm_tcn_precision, hm_tcn_recall, thresh2 = precision_recall_curve(hm_tcn_outcome_true, hm_tcn_outcome_pred, pos_label=1)\n", |
|
|
187 |
"hm_rnn_precision, hm_rnn_recall, thresh3 = precision_recall_curve(hm_rnn_outcome_true, hm_rnn_outcome_pred, pos_label=1)\n", |
|
|
188 |
"\n", |
|
|
189 |
"plt.plot(hm_concare_precision, hm_concare_recall, linestyle='solid',color='dodgerblue', label='ConCare')\n", |
|
|
190 |
"plt.plot(hm_tcn_precision, hm_tcn_recall, linestyle='dotted',color='violet', label='TCN')\n", |
|
|
191 |
"plt.plot(hm_rnn_precision, hm_rnn_recall, linestyle='dashed',color='orange', label='RNN')\n", |
|
|
192 |
"\n", |
|
|
193 |
"# # title\n", |
|
|
194 |
"# plt.title('PRC curve')\n", |
|
|
195 |
"# x label\n", |
|
|
196 |
"plt.xlabel('Recall')\n", |
|
|
197 |
"# y label\n", |
|
|
198 |
"plt.ylabel('Precision')\n", |
|
|
199 |
"\n", |
|
|
200 |
"plt.legend(loc='lower left')\n", |
|
|
201 |
"plt.savefig('cdsl_prc.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")\n", |
|
|
202 |
"plt.show();" |
|
|
203 |
] |
|
|
204 |
}, |
|
|
205 |
{ |
|
|
206 |
"cell_type": "markdown", |
|
|
207 |
"metadata": {}, |
|
|
208 |
"source": [ |
|
|
209 |
"## Calibration Plot" |
|
|
210 |
] |
|
|
211 |
}, |
|
|
212 |
{ |
|
|
213 |
"cell_type": "code", |
|
|
214 |
"execution_count": null, |
|
|
215 |
"metadata": {}, |
|
|
216 |
"outputs": [], |
|
|
217 |
"source": [ |
|
|
218 |
"tj_adacare_prob_true, tj_adacare_prob_pred = calibration_curve(tj_adacare_outcome_true, tj_adacare_outcome_pred, n_bins=10)\n", |
|
|
219 |
"tj_retain_prob_true, tj_retain_prob_pred = calibration_curve(tj_retain_outcome_true, tj_retain_outcome_pred, n_bins=10)\n", |
|
|
220 |
"tj_tcn_prob_true, tj_tcn_prob_pred = calibration_curve(tj_tcn_outcome_true, tj_tcn_outcome_pred, n_bins=10)\n", |
|
|
221 |
"\n", |
|
|
222 |
"fig, ax = plt.subplots()\n", |
|
|
223 |
"# only these two lines are calibration curves\n", |
|
|
224 |
"plt.plot(tj_adacare_prob_pred, tj_adacare_prob_true, marker='o', linewidth=1, label='AdaCare')\n", |
|
|
225 |
"plt.plot(tj_retain_prob_pred, tj_retain_prob_true, marker='v', linewidth=1, label='RETAIN')\n", |
|
|
226 |
"plt.plot(tj_tcn_prob_pred, tj_tcn_prob_true, marker='s', linewidth=1, label='TCN')\n", |
|
|
227 |
"\n", |
|
|
228 |
"# reference line, legends, and axis labels\n", |
|
|
229 |
"line = mlines.Line2D([0, 1], [0, 1], linestyle='-.', color='grey')\n", |
|
|
230 |
"transform = ax.transAxes\n", |
|
|
231 |
"line.set_transform(transform)\n", |
|
|
232 |
"ax.add_line(line)\n", |
|
|
233 |
"ax.set_xlabel('Predicted probability')\n", |
|
|
234 |
"ax.set_ylabel('True probability in each bin')\n", |
|
|
235 |
"plt.legend(loc='lower right')\n", |
|
|
236 |
"plt.savefig('tjh_calibration.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")\n", |
|
|
237 |
"plt.show()" |
|
|
238 |
] |
|
|
239 |
}, |
|
|
240 |
{ |
|
|
241 |
"cell_type": "code", |
|
|
242 |
"execution_count": null, |
|
|
243 |
"metadata": {}, |
|
|
244 |
"outputs": [], |
|
|
245 |
"source": [ |
|
|
246 |
"hm_concare_prob_true, hm_concare_prob_pred = calibration_curve(hm_concare_outcome_true, hm_concare_outcome_pred, n_bins=10)\n", |
|
|
247 |
"hm_tcn_prob_true, hm_tcn_prob_pred = calibration_curve(hm_tcn_outcome_true, hm_tcn_outcome_pred, n_bins=10)\n", |
|
|
248 |
"hm_rnn_prob_true, hm_rnn_prob_pred = calibration_curve(hm_rnn_outcome_true, hm_rnn_outcome_pred, n_bins=10)\n", |
|
|
249 |
"\n", |
|
|
250 |
"fig, ax = plt.subplots()\n", |
|
|
251 |
"# only these two lines are calibration curves\n", |
|
|
252 |
"plt.plot(hm_concare_prob_pred, hm_concare_prob_true, marker='o', linewidth=1, label='ConCare')\n", |
|
|
253 |
"plt.plot(hm_tcn_prob_pred, hm_tcn_prob_true, marker='s', linewidth=1, label='TCN')\n", |
|
|
254 |
"plt.plot(hm_rnn_prob_pred, hm_rnn_prob_true, marker='v', linewidth=1, label='RNN')\n", |
|
|
255 |
"\n", |
|
|
256 |
"# reference line, legends, and axis labels\n", |
|
|
257 |
"line = mlines.Line2D([0, 1], [0, 1], linestyle='-.', color='grey')\n", |
|
|
258 |
"transform = ax.transAxes\n", |
|
|
259 |
"line.set_transform(transform)\n", |
|
|
260 |
"ax.add_line(line)\n", |
|
|
261 |
"ax.set_xlabel('Predicted probability')\n", |
|
|
262 |
"ax.set_ylabel('True probability in each bin')\n", |
|
|
263 |
"plt.legend(loc='lower right')\n", |
|
|
264 |
"plt.savefig('cdsl_calibration.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")\n", |
|
|
265 |
"plt.show()" |
|
|
266 |
] |
|
|
267 |
}, |
|
|
268 |
{ |
|
|
269 |
"cell_type": "markdown", |
|
|
270 |
"metadata": {}, |
|
|
271 |
"source": [ |
|
|
272 |
"## Draw OSMAE/EMP scores on different threshold" |
|
|
273 |
] |
|
|
274 |
}, |
|
|
275 |
{ |
|
|
276 |
"cell_type": "code", |
|
|
277 |
"execution_count": null, |
|
|
278 |
"metadata": {}, |
|
|
279 |
"outputs": [], |
|
|
280 |
"source": [ |
|
|
281 |
"covid_scores = pd.read_pickle('./saved_pkl/covid_evaluation_scores.pkl')\n", |
|
|
282 |
"emp, osmae, thresholds = covid_scores[\"emp\"][1::4], covid_scores[\"osmae\"][1::4], covid_scores[\"threshold\"][1::4]" |
|
|
283 |
] |
|
|
284 |
}, |
|
|
285 |
{ |
|
|
286 |
"cell_type": "code", |
|
|
287 |
"execution_count": null, |
|
|
288 |
"metadata": {}, |
|
|
289 |
"outputs": [], |
|
|
290 |
"source": [ |
|
|
291 |
"## EMP Score\n", |
|
|
292 |
"ax = sns.regplot(x=thresholds, y=emp, marker=\"o\", color=\"g\", line_kws={\"color\": \"grey\", \"linestyle\": \"-\", \"linewidth\": \"1\"}, ci=99.9999)\n", |
|
|
293 |
"plt.xlabel('Threshold γ')\n", |
|
|
294 |
"plt.ylabel('ES score')\n", |
|
|
295 |
"\n", |
|
|
296 |
"plt.savefig('emp_trend.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")\n", |
|
|
297 |
"plt.show();" |
|
|
298 |
] |
|
|
299 |
}, |
|
|
300 |
{ |
|
|
301 |
"cell_type": "code", |
|
|
302 |
"execution_count": null, |
|
|
303 |
"metadata": {}, |
|
|
304 |
"outputs": [], |
|
|
305 |
"source": [ |
|
|
306 |
"## OSMAE Score\n", |
|
|
307 |
"ax = sns.regplot(x=thresholds, y=osmae, marker=\"o\", color=\"dodgerblue\", line_kws={\"color\": \"grey\", \"linestyle\": \"-\", \"linewidth\": \"1\"}, ci=99.9999)\n", |
|
|
308 |
"plt.xlabel('Threshold γ')\n", |
|
|
309 |
"plt.ylabel('OSMAE score')\n", |
|
|
310 |
"\n", |
|
|
311 |
"plt.savefig('osmae_trend.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")\n", |
|
|
312 |
"plt.show();" |
|
|
313 |
] |
|
|
314 |
}, |
|
|
315 |
{ |
|
|
316 |
"cell_type": "markdown", |
|
|
317 |
"metadata": {}, |
|
|
318 |
"source": [ |
|
|
319 |
"## Draw hidden state PCA result on validation set (CDSL dataset)" |
|
|
320 |
] |
|
|
321 |
}, |
|
|
322 |
{ |
|
|
323 |
"cell_type": "code", |
|
|
324 |
"execution_count": null, |
|
|
325 |
"metadata": {}, |
|
|
326 |
"outputs": [], |
|
|
327 |
"source": [ |
|
|
328 |
"val_idx=[1010, 1915, 1656, 2952, 246, 2914, 3146, 2910, 914, 1335, 3046, 404, 2592, 2951, 309, 266, 471, 1112, 490, 3195, 2621, 2143, 1485, 893, 2803, 319, 3231, 2185, 771, 2811, 1950, 3615, 2537, 2546, 3750, 2284, 2122, 1817, 767, 2698, 1564, 3519, 1285, 2808, 1092, 3782, 1115, 1174, 1996, 2603, 3337, 2806, 1105, 2180, 1006, 1900, 3563, 808, 3613, 907, 2069, 1893, 1877, 2362, 2403, 693, 3425, 3501, 626, 244, 3101, 2255, 1661, 1723, 3688, 2571, 2222, 382, 1091, 1, 1884, 3559, 3450, 2648, 2246, 2757, 820, 3375, 1650, 2509, 3760, 2519, 27, 1751, 1964, 1571, 2471, 541, 815, 1094, 2749, 153, 2686, 544, 752, 3085, 1371, 2407, 3675, 1162, 1938, 1197, 3571, 2023, 2847, 1807, 1307, 793, 2610, 1469, 22, 1883, 396, 1098, 1704, 1450, 250, 1258, 3453, 2866, 1995, 2336, 1917, 1724, 3805, 41, 2461, 1241, 2376, 467, 3730, 3090, 3234, 3104, 183, 2827, 274, 1488, 1608, 2495, 3633, 3554, 2723, 3358, 2214, 2963, 3648, 3698, 1569, 3270, 1646, 2675, 2014, 2165, 3106, 2209, 2352, 3580, 3597, 659, 2349, 2074, 988, 1952, 3821, 2640, 3727, 3380, 2646, 3741, 1753, 679, 1707, 633, 1224, 1261, 1501, 1942, 935, 729, 3293, 3638, 2759, 1214, 3028, 3703, 2260, 1406, 2531, 737, 3462, 1495, 1728, 3366, 3510, 42, 3659, 2953, 2378, 1330, 3474, 1372, 89, 1153, 1825, 3218, 3068, 1888, 3287, 2071, 2082, 1460, 3761, 3480, 3424, 651, 1618, 1859, 960, 3344, 3725, 2942, 2176, 1651, 2936, 1187, 2060, 2021, 3317, 861, 1259, 241, 3528, 200, 2392, 1316, 2486, 2923, 923, 98, 3549, 1431, 534, 1840, 3208, 201, 3605, 1337, 877, 571, 3147, 2678, 460, 2970, 3161, 1409, 2304, 1955, 1338, 2364, 754, 3635, 3264, 2620, 889, 566, 744, 1848, 954, 812, 549, 1190, 745, 2371, 2590, 1759, 1710, 1203, 447, 2068, 2691, 245, 880, 122, 3182, 2997, 1934, 1139, 1491, 1166, 1368, 2030, 162, 1829, 766, 3447, 3451, 3386, 2667, 2162, 2096, 3215, 2133, 3620, 743, 1342, 3385, 446, 3557, 3305, 883, 3616, 2130, 1182, 1346, 530, 1732, 1233, 292, 3787, 2467, 3514, 230, 652, 908, 3318, 1213, 3548, 2957, 1552, 2290, 2036, 1102, 3276, 1897, 1886, 2384, 1625, 3143, 1711, 2457, 2832, 2056, 1746, 3361, 2271, 2532, 1981, 1097, 1008, 705, 3671, 2875, 2870, 1760, 582, 3014, 1524, 2682, 712, 916, 461, 474, 3245, 2337, 2077, 2715, 1765, 3409, 2826, 3734, 998, 3813, 233, 1336, 1880, 1703, 2607, 1663, 1476, 380, 3015, 1595, 132, 3737, 125, 2421, 981, 2966, 1961, 991, 3216, 723, 526, 660, 1309, 2529, 3004, 724, 2595, 2573, 354, 3352, 1436, 15, 1184, 3190, 1167, 1758, 81, 3407, 3669, 3141, 3801, 1953, 2898]" |
|
|
329 |
] |
|
|
330 |
}, |
|
|
331 |
{ |
|
|
332 |
"cell_type": "code", |
|
|
333 |
"execution_count": null, |
|
|
334 |
"metadata": {}, |
|
|
335 |
"outputs": [], |
|
|
336 |
"source": [ |
|
|
337 |
"from app import models\n", |
|
|
338 |
"\n", |
|
|
339 |
"# model = models.RETAIN(input_dim=99, hidden_dim=128)" |
|
|
340 |
] |
|
|
341 |
}, |
|
|
342 |
{ |
|
|
343 |
"cell_type": "code", |
|
|
344 |
"execution_count": null, |
|
|
345 |
"metadata": {}, |
|
|
346 |
"outputs": [], |
|
|
347 |
"source": [ |
|
|
348 |
"def extract_backbone_param(ckpt):\n", |
|
|
349 |
" backbone = {}\n", |
|
|
350 |
" for k,v in ckpt.items():\n", |
|
|
351 |
" if \"backbone\" in k:\n", |
|
|
352 |
" new_k = k.replace(\"backbone.\", \"\")\n", |
|
|
353 |
" backbone[new_k] = v\n", |
|
|
354 |
" return backbone" |
|
|
355 |
] |
|
|
356 |
}, |
|
|
357 |
{ |
|
|
358 |
"cell_type": "code", |
|
|
359 |
"execution_count": null, |
|
|
360 |
"metadata": {}, |
|
|
361 |
"outputs": [], |
|
|
362 |
"source": [ |
|
|
363 |
"x = pd.read_pickle(\"datasets/hm/processed_data/x.pkl\")\n", |
|
|
364 |
"y = pd.read_pickle(\"datasets/hm/processed_data/y.pkl\")\n", |
|
|
365 |
"visits_length = pd.read_pickle(\"datasets/hm/processed_data/visits_length.pkl\")\n", |
|
|
366 |
"x = x[val_idx]\n", |
|
|
367 |
"y = y[val_idx]\n", |
|
|
368 |
"visits_length = visits_length[val_idx]\n", |
|
|
369 |
"device = torch.device(\"cpu\")" |
|
|
370 |
] |
|
|
371 |
}, |
|
|
372 |
{ |
|
|
373 |
"cell_type": "code", |
|
|
374 |
"execution_count": null, |
|
|
375 |
"metadata": {}, |
|
|
376 |
"outputs": [], |
|
|
377 |
"source": [ |
|
|
378 |
"outcome_status=[]\n", |
|
|
379 |
"patient=[]\n", |
|
|
380 |
"for i in range(len(visits_length)):\n", |
|
|
381 |
" outcome_status.append(y[i][visits_length[i]-1][0])\n", |
|
|
382 |
" patient.append(x[i][visits_length[i]-1].detach().numpy())\n", |
|
|
383 |
"\n", |
|
|
384 |
"outcome_status = torch.tensor(outcome_status)\n", |
|
|
385 |
"patient = torch.tensor(patient)\n", |
|
|
386 |
"# outcome_status = y[:, 0, 0]\n", |
|
|
387 |
"outcome_status = outcome_status.unsqueeze(-1)\n", |
|
|
388 |
"# patient = x[:, 0, :]\n", |
|
|
389 |
"patient = torch.unsqueeze(patient, dim=1)\n", |
|
|
390 |
"patient = patient.float()" |
|
|
391 |
] |
|
|
392 |
}, |
|
|
393 |
{ |
|
|
394 |
"cell_type": "code", |
|
|
395 |
"execution_count": null, |
|
|
396 |
"metadata": {}, |
|
|
397 |
"outputs": [], |
|
|
398 |
"source": [ |
|
|
399 |
"outcome_status.shape, patient.shape" |
|
|
400 |
] |
|
|
401 |
}, |
|
|
402 |
{ |
|
|
403 |
"cell_type": "code", |
|
|
404 |
"execution_count": null, |
|
|
405 |
"metadata": {}, |
|
|
406 |
"outputs": [], |
|
|
407 |
"source": [ |
|
|
408 |
"def remove_outliers(df,columns,n_std):\n", |
|
|
409 |
" for col in columns:\n", |
|
|
410 |
" mean = df[col].mean()\n", |
|
|
411 |
" sd = df[col].std()\n", |
|
|
412 |
" df = df[abs(df[col]-mean) <= sd*n_std]\n", |
|
|
413 |
" return df" |
|
|
414 |
] |
|
|
415 |
}, |
|
|
416 |
{ |
|
|
417 |
"cell_type": "code", |
|
|
418 |
"execution_count": null, |
|
|
419 |
"metadata": {}, |
|
|
420 |
"outputs": [], |
|
|
421 |
"source": [ |
|
|
422 |
"n_std = 3\n", |
|
|
423 |
"approach = 'pca' # 'pca' or 'tsne'" |
|
|
424 |
] |
|
|
425 |
}, |
|
|
426 |
{ |
|
|
427 |
"cell_type": "markdown", |
|
|
428 |
"metadata": {}, |
|
|
429 |
"source": [ |
|
|
430 |
"### Multitask Model" |
|
|
431 |
] |
|
|
432 |
}, |
|
|
433 |
{ |
|
|
434 |
"cell_type": "code", |
|
|
435 |
"execution_count": null, |
|
|
436 |
"metadata": {}, |
|
|
437 |
"outputs": [], |
|
|
438 |
"source": [ |
|
|
439 |
"# model = models.RETAIN(input_dim=99, hidden_dim=128)\n", |
|
|
440 |
"hidden_dim=128\n", |
|
|
441 |
"model = models.ConCare(\n", |
|
|
442 |
" lab_dim=97,\n", |
|
|
443 |
" demo_dim=2,\n", |
|
|
444 |
" hidden_dim=hidden_dim,\n", |
|
|
445 |
" d_model=hidden_dim,\n", |
|
|
446 |
" MHD_num_head=4,\n", |
|
|
447 |
" d_ff=4 * hidden_dim,\n", |
|
|
448 |
" drop=0.0,\n", |
|
|
449 |
")\n", |
|
|
450 |
"\n", |
|
|
451 |
"multitask_ckpt = torch.load(\"./checkpoints/hm_multitask_concare_ep100_kf10_bs64_hid128_1_seed0.pth\", map_location=torch.device('cpu'))\n", |
|
|
452 |
"multitask_backbone = extract_backbone_param(multitask_ckpt)\n", |
|
|
453 |
"model.load_state_dict(multitask_backbone)\n", |
|
|
454 |
"out = model(patient, device)\n", |
|
|
455 |
"out = torch.squeeze(out)\n", |
|
|
456 |
"out = out.detach().numpy()" |
|
|
457 |
] |
|
|
458 |
}, |
|
|
459 |
{ |
|
|
460 |
"cell_type": "code", |
|
|
461 |
"execution_count": null, |
|
|
462 |
"metadata": {}, |
|
|
463 |
"outputs": [], |
|
|
464 |
"source": [ |
|
|
465 |
"if approach == 'pca':\n", |
|
|
466 |
" projected = PCA(2).fit_transform(out)\n", |
|
|
467 |
"else:\n", |
|
|
468 |
" projected = TSNE(n_components=2, learning_rate='auto', init='random').fit_transform(out)\n", |
|
|
469 |
"\n", |
|
|
470 |
"concatenated = np.concatenate([projected, outcome_status], axis=1)\n", |
|
|
471 |
"df = pd.DataFrame(concatenated, columns = ['Component 1', 'Component 2', 'Outcome'])\n", |
|
|
472 |
"df = remove_outliers(df, ['Component 1', 'Component 2'], n_std)\n", |
|
|
473 |
"df['Outcome'].replace({1: 'Dead', 0: 'Alive'}, inplace=True)\n", |
|
|
474 |
"\n", |
|
|
475 |
"sns.scatterplot(data=df, x=\"Component 1\", y=\"Component 2\", hue=\"Outcome\", style=\"Outcome\", palette=[\"C2\", \"C3\"], alpha=0.5)\n", |
|
|
476 |
"plt.savefig(f'multitask_{approach}.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")" |
|
|
477 |
] |
|
|
478 |
}, |
|
|
479 |
{ |
|
|
480 |
"cell_type": "markdown", |
|
|
481 |
"metadata": {}, |
|
|
482 |
"source": [ |
|
|
483 |
"### Outcome Prediction Model" |
|
|
484 |
] |
|
|
485 |
}, |
|
|
486 |
{ |
|
|
487 |
"cell_type": "code", |
|
|
488 |
"execution_count": null, |
|
|
489 |
"metadata": {}, |
|
|
490 |
"outputs": [], |
|
|
491 |
"source": [ |
|
|
492 |
"hidden_dim=128\n", |
|
|
493 |
"model = models.ConCare(\n", |
|
|
494 |
" lab_dim=97,\n", |
|
|
495 |
" demo_dim=2,\n", |
|
|
496 |
" hidden_dim=hidden_dim,\n", |
|
|
497 |
" d_model=hidden_dim,\n", |
|
|
498 |
" MHD_num_head=4,\n", |
|
|
499 |
" d_ff=4 * hidden_dim,\n", |
|
|
500 |
" drop=0.0,\n", |
|
|
501 |
")\n", |
|
|
502 |
"\n", |
|
|
503 |
"outcome_ckpt = torch.load(\"./checkpoints/hm_outcome_concare_ep100_kf10_bs64_hid128_1_seed0.pth\", map_location=torch.device('cpu'))\n", |
|
|
504 |
"outcome_backbone = extract_backbone_param(outcome_ckpt)\n", |
|
|
505 |
"model.load_state_dict(outcome_backbone)\n", |
|
|
506 |
"out = model(patient, device)\n", |
|
|
507 |
"out = torch.squeeze(out)\n", |
|
|
508 |
"out = out.detach().numpy()" |
|
|
509 |
] |
|
|
510 |
}, |
|
|
511 |
{ |
|
|
512 |
"cell_type": "code", |
|
|
513 |
"execution_count": null, |
|
|
514 |
"metadata": {}, |
|
|
515 |
"outputs": [], |
|
|
516 |
"source": [ |
|
|
517 |
"if approach == 'pca':\n", |
|
|
518 |
" projected = PCA(2).fit_transform(out)\n", |
|
|
519 |
"else:\n", |
|
|
520 |
" projected = TSNE(n_components=2, learning_rate='auto', init='random').fit_transform(out)\n", |
|
|
521 |
"\n", |
|
|
522 |
"concatenated = np.concatenate([projected, outcome_status], axis=1)\n", |
|
|
523 |
"df = pd.DataFrame(concatenated, columns = ['Component 1', 'Component 2', 'Outcome'])\n", |
|
|
524 |
"df = remove_outliers(df, ['Component 1', 'Component 2'], n_std)\n", |
|
|
525 |
"df['Outcome'].replace({1: 'Dead', 0: 'Alive'}, inplace=True)\n", |
|
|
526 |
"\n", |
|
|
527 |
"sns.scatterplot(data=df, x=\"Component 1\", y=\"Component 2\", hue=\"Outcome\", style=\"Outcome\", palette=[\"C2\", \"C3\"], alpha=0.5)\n", |
|
|
528 |
"plt.savefig(f'outcome_{approach}.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")" |
|
|
529 |
] |
|
|
530 |
}, |
|
|
531 |
{ |
|
|
532 |
"cell_type": "markdown", |
|
|
533 |
"metadata": {}, |
|
|
534 |
"source": [ |
|
|
535 |
"### LOS Prediction model" |
|
|
536 |
] |
|
|
537 |
}, |
|
|
538 |
{ |
|
|
539 |
"cell_type": "code", |
|
|
540 |
"execution_count": null, |
|
|
541 |
"metadata": {}, |
|
|
542 |
"outputs": [], |
|
|
543 |
"source": [ |
|
|
544 |
"hidden_dim=64\n", |
|
|
545 |
"model = models.ConCare(\n", |
|
|
546 |
" lab_dim=97,\n", |
|
|
547 |
" demo_dim=2,\n", |
|
|
548 |
" hidden_dim=hidden_dim,\n", |
|
|
549 |
" d_model=hidden_dim,\n", |
|
|
550 |
" MHD_num_head=4,\n", |
|
|
551 |
" d_ff=4 * hidden_dim,\n", |
|
|
552 |
" drop=0.0,\n", |
|
|
553 |
")\n", |
|
|
554 |
"\n", |
|
|
555 |
"los_ckpt = torch.load(\"./checkpoints/hm_los_concare_ep100_kf10_bs64_hid64_1_seed0.pth\", map_location=torch.device('cpu'))\n", |
|
|
556 |
"los_backbone = extract_backbone_param(los_ckpt)\n", |
|
|
557 |
"model.load_state_dict(los_backbone)\n", |
|
|
558 |
"out = model(patient, device)\n", |
|
|
559 |
"out = torch.squeeze(out)\n", |
|
|
560 |
"out = out.detach().numpy()" |
|
|
561 |
] |
|
|
562 |
}, |
|
|
563 |
{ |
|
|
564 |
"cell_type": "code", |
|
|
565 |
"execution_count": null, |
|
|
566 |
"metadata": {}, |
|
|
567 |
"outputs": [], |
|
|
568 |
"source": [ |
|
|
569 |
"if approach == 'pca':\n", |
|
|
570 |
" projected = PCA(2).fit_transform(out)\n", |
|
|
571 |
"else:\n", |
|
|
572 |
" projected = TSNE(n_components=2, learning_rate='auto', init='random').fit_transform(out)\n", |
|
|
573 |
"\n", |
|
|
574 |
"concatenated = np.concatenate([projected, outcome_status], axis=1)\n", |
|
|
575 |
"df = pd.DataFrame(concatenated, columns = ['Component 1', 'Component 2', 'Outcome'])\n", |
|
|
576 |
"df = remove_outliers(df, ['Component 1', 'Component 2'], n_std)\n", |
|
|
577 |
"df['Outcome'].replace({1: 'Dead', 0: 'Alive'}, inplace=True)\n", |
|
|
578 |
"\n", |
|
|
579 |
"sns.scatterplot(data=df, x=\"Component 1\", y=\"Component 2\", hue=\"Outcome\", style=\"Outcome\", palette=[\"C2\", \"C3\"], alpha=0.5)\n", |
|
|
580 |
"plt.savefig(f'los_{approach}.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")" |
|
|
581 |
] |
|
|
582 |
}, |
|
|
583 |
{ |
|
|
584 |
"cell_type": "markdown", |
|
|
585 |
"metadata": {}, |
|
|
586 |
"source": [ |
|
|
587 |
"## Case Study" |
|
|
588 |
] |
|
|
589 |
}, |
|
|
590 |
{ |
|
|
591 |
"cell_type": "markdown", |
|
|
592 |
"metadata": {}, |
|
|
593 |
"source": [ |
|
|
594 |
"### CDSL dataset" |
|
|
595 |
] |
|
|
596 |
}, |
|
|
597 |
{ |
|
|
598 |
"cell_type": "code", |
|
|
599 |
"execution_count": null, |
|
|
600 |
"metadata": {}, |
|
|
601 |
"outputs": [], |
|
|
602 |
"source": [ |
|
|
603 |
"x = pd.read_pickle(\"datasets/hm/processed_data/x.pkl\")\n", |
|
|
604 |
"y = pd.read_pickle(\"datasets/hm/processed_data/y.pkl\")\n", |
|
|
605 |
"visits_length = pd.read_pickle(\"datasets/hm/processed_data/visits_length.pkl\")\n", |
|
|
606 |
"x = x[val_idx]\n", |
|
|
607 |
"y = y[val_idx]\n", |
|
|
608 |
"visits_length = visits_length[val_idx]\n", |
|
|
609 |
"device = torch.device(\"cpu\")" |
|
|
610 |
] |
|
|
611 |
}, |
|
|
612 |
{ |
|
|
613 |
"cell_type": "code", |
|
|
614 |
"execution_count": null, |
|
|
615 |
"metadata": {}, |
|
|
616 |
"outputs": [], |
|
|
617 |
"source": [ |
|
|
618 |
"long_visits_id_list = []\n", |
|
|
619 |
"\n", |
|
|
620 |
"for i in range(len(visits_length)):\n", |
|
|
621 |
" if visits_length[i] > 20:\n", |
|
|
622 |
" long_visits_id_list.append(i)\n", |
|
|
623 |
" print(f\"[{i}: {y[i][0][0].item()}]\", end=\" \")" |
|
|
624 |
] |
|
|
625 |
}, |
|
|
626 |
{ |
|
|
627 |
"cell_type": "markdown", |
|
|
628 |
"metadata": {}, |
|
|
629 |
"source": [ |
|
|
630 |
"#### ConCare Multitask" |
|
|
631 |
] |
|
|
632 |
}, |
|
|
633 |
{ |
|
|
634 |
"cell_type": "code", |
|
|
635 |
"execution_count": null, |
|
|
636 |
"metadata": {}, |
|
|
637 |
"outputs": [], |
|
|
638 |
"source": [ |
|
|
639 |
"idx=20 # 60, 243 | 24, 114 129 20\n", |
|
|
640 |
"outcome_status=y[idx][0][0]\n", |
|
|
641 |
"los_status=y[idx][:visits_length[idx]][:,1]\n", |
|
|
642 |
"patient=x[idx][:visits_length[idx]]\n", |
|
|
643 |
"\n", |
|
|
644 |
"outcome_status = outcome_status.unsqueeze(-1)\n", |
|
|
645 |
"patient = patient.float()\n", |
|
|
646 |
"\n", |
|
|
647 |
"hidden_dim=128\n", |
|
|
648 |
"backbone = models.ConCare(\n", |
|
|
649 |
" lab_dim=97,\n", |
|
|
650 |
" demo_dim=2,\n", |
|
|
651 |
" hidden_dim=hidden_dim,\n", |
|
|
652 |
" d_model=hidden_dim,\n", |
|
|
653 |
" MHD_num_head=4,\n", |
|
|
654 |
" d_ff=4 * hidden_dim,\n", |
|
|
655 |
" drop=0.0,\n", |
|
|
656 |
")\n", |
|
|
657 |
"head = models.MultitaskHead(\n", |
|
|
658 |
" hidden_dim=hidden_dim,\n", |
|
|
659 |
" output_dim=1,\n", |
|
|
660 |
")\n", |
|
|
661 |
"model = models.Model(backbone, head)\n", |
|
|
662 |
"los_ckpt = torch.load(\"./checkpoints/hm_multitask_concare_ep100_kf10_bs64_hid128_1_seed0.pth\", map_location=torch.device('cpu'))\n", |
|
|
663 |
"model.load_state_dict(los_ckpt)\n", |
|
|
664 |
"\n", |
|
|
665 |
"# ConCare model does not accept single patient input, so we need to create a batch of size 2\n", |
|
|
666 |
"patient = torch.stack((patient, patient), dim=0)\n", |
|
|
667 |
"risk, out = model(patient, device, None)\n", |
|
|
668 |
"out = out[0]\n", |
|
|
669 |
"risk = risk[0]\n", |
|
|
670 |
"los_statistics = {'los_mean': 6.1315513, 'los_std': 5.6816683}\n", |
|
|
671 |
"out = torch.squeeze(out)\n", |
|
|
672 |
"risk = torch.squeeze(risk)\n", |
|
|
673 |
"out = out * los_statistics['los_std'] + los_statistics['los_mean']\n", |
|
|
674 |
"\n", |
|
|
675 |
"los_status, out, outcome_status, risk" |
|
|
676 |
] |
|
|
677 |
}, |
|
|
678 |
{ |
|
|
679 |
"cell_type": "code", |
|
|
680 |
"execution_count": null, |
|
|
681 |
"metadata": {}, |
|
|
682 |
"outputs": [], |
|
|
683 |
"source": [ |
|
|
684 |
"hidden_dim=128\n", |
|
|
685 |
"backbone = models.ConCare(\n", |
|
|
686 |
" lab_dim=97,\n", |
|
|
687 |
" demo_dim=2,\n", |
|
|
688 |
" hidden_dim=hidden_dim,\n", |
|
|
689 |
" d_model=hidden_dim,\n", |
|
|
690 |
" MHD_num_head=4,\n", |
|
|
691 |
" d_ff=4 * hidden_dim,\n", |
|
|
692 |
" drop=0.0,\n", |
|
|
693 |
")\n", |
|
|
694 |
"head = models.MultitaskHead(\n", |
|
|
695 |
" hidden_dim=hidden_dim,\n", |
|
|
696 |
" output_dim=1,\n", |
|
|
697 |
")\n", |
|
|
698 |
"model = models.Model(backbone, head)\n", |
|
|
699 |
"los_ckpt = torch.load(\"./checkpoints/hm_multitask_concare_ep100_kf10_bs64_hid128_1_seed0.pth\", map_location=torch.device('cpu'))\n", |
|
|
700 |
"model.load_state_dict(los_ckpt)\n", |
|
|
701 |
"\n", |
|
|
702 |
"def inference_case(idx):\n", |
|
|
703 |
" outcome_status=y[idx][0][0]\n", |
|
|
704 |
" los_status=y[idx][:visits_length[idx]][:,1]\n", |
|
|
705 |
" patient=x[idx][:visits_length[idx]]\n", |
|
|
706 |
"\n", |
|
|
707 |
" outcome_status = outcome_status.unsqueeze(-1)\n", |
|
|
708 |
" patient = patient.float()\n", |
|
|
709 |
"\n", |
|
|
710 |
" # ConCare model does not accept single patient input, so we need to create a batch of size 2\n", |
|
|
711 |
" patient = torch.stack((patient, patient), dim=0)\n", |
|
|
712 |
" risk, out = model(patient, device, None)\n", |
|
|
713 |
" out = out[0]\n", |
|
|
714 |
" risk = risk[0]\n", |
|
|
715 |
" los_statistics = {'los_mean': 6.1315513, 'los_std': 5.6816683}\n", |
|
|
716 |
" out = torch.squeeze(out)\n", |
|
|
717 |
" risk = torch.squeeze(risk)\n", |
|
|
718 |
" out = out * los_statistics['los_std'] + los_statistics['los_mean']\n", |
|
|
719 |
" # print(\"los gt:\", los_status)\n", |
|
|
720 |
" # print(\"los pred:\", out)\n", |
|
|
721 |
" # print(\"outcome:\", outcome_status)\n", |
|
|
722 |
" # print(\"risk pred:\", risk)\n", |
|
|
723 |
" # print(\"--------------------\")\n", |
|
|
724 |
" return los_status.cpu().detach().numpy(), out.cpu().detach().numpy(), outcome_status.cpu().detach().numpy(), risk.cpu().detach().numpy()\n", |
|
|
725 |
"\n", |
|
|
726 |
"\n", |
|
|
727 |
"los_status, out, outcome_status, risk = inference_case(60)\n", |
|
|
728 |
"los_status, out, outcome_status, risk" |
|
|
729 |
] |
|
|
730 |
}, |
|
|
731 |
{ |
|
|
732 |
"cell_type": "code", |
|
|
733 |
"execution_count": null, |
|
|
734 |
"metadata": {}, |
|
|
735 |
"outputs": [], |
|
|
736 |
"source": [ |
|
|
737 |
"def plot_case(los_status, out, outcome_status, risk, idx):\n", |
|
|
738 |
" color = 'green' if outcome_status == 0 else 'red'\n", |
|
|
739 |
" label_info = f'Alive Case #{idx}' if outcome_status == 0 else f'Dead Case #{idx}'\n", |
|
|
740 |
" filename = f'case_study_los_alive_{idx}' if outcome_status == 0 else f'case_study_los_dead_{idx}'\n", |
|
|
741 |
" los_status = np.negative(los_status)\n", |
|
|
742 |
" fig = plt.figure()\n", |
|
|
743 |
" ax = fig.add_subplot(111)\n", |
|
|
744 |
" ax2 = ax.twinx()\n", |
|
|
745 |
" ax.plot(los_status, out, marker='o', linewidth=1, label=label_info, color=color)\n", |
|
|
746 |
" ax2.plot(los_status, risk, marker=',', linewidth=2, label='Risk', color='skyblue')\n", |
|
|
747 |
" ax.set_ylim([0, 30])\n", |
|
|
748 |
" ax2.set_ylim([0, 1])\n", |
|
|
749 |
" ax2.grid(False)\n", |
|
|
750 |
" ax.plot([0, -30], [0, 30], linestyle='-.', color='grey')\n", |
|
|
751 |
" ax.set_xlabel('True Length of Stay (days)')\n", |
|
|
752 |
" ax.set_ylabel('Predicted Length of Stay (days)')\n", |
|
|
753 |
" ax.legend(loc='upper left')\n", |
|
|
754 |
" ax2.legend(loc='lower left')\n", |
|
|
755 |
"\n", |
|
|
756 |
" # plt.savefig(f'case_study_los_{idx}.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")\n", |
|
|
757 |
" plt.savefig(f'cases/cdsl/{filename}.png', format=\"png\", bbox_inches=\"tight\")\n", |
|
|
758 |
" plt.show()\n" |
|
|
759 |
] |
|
|
760 |
}, |
|
|
761 |
{ |
|
|
762 |
"cell_type": "code", |
|
|
763 |
"execution_count": null, |
|
|
764 |
"metadata": {}, |
|
|
765 |
"outputs": [], |
|
|
766 |
"source": [ |
|
|
767 |
"def abs_var(x, position):\n", |
|
|
768 |
" return f'{abs(int(x))}'\n", |
|
|
769 |
"\n", |
|
|
770 |
"# case 1\n", |
|
|
771 |
"los_status, out, outcome_status, risk = inference_case(60)\n", |
|
|
772 |
"los_status = np.negative(los_status)\n", |
|
|
773 |
"fig, (ax, bx) = plt.subplots(1, 2, figsize=(12, 5))\n", |
|
|
774 |
"ax2 = ax.twinx()\n", |
|
|
775 |
"ax.plot(los_status, out, marker='o', linewidth=1, label=\"Alive case\", color='green')\n", |
|
|
776 |
"ax2.plot(los_status, risk, marker=',', linewidth=2, label='Risk', color='skyblue')\n", |
|
|
777 |
"ax.set_ylim([0, 22])\n", |
|
|
778 |
"ax2.set_ylim([0, 1])\n", |
|
|
779 |
"ax2.grid(False)\n", |
|
|
780 |
"ax.plot([0, -22], [0, 22], linestyle='-.', color='grey')\n", |
|
|
781 |
"ax.set_xlabel('True Length of Stay (days)')\n", |
|
|
782 |
"ax.set_ylabel('Predicted Length of Stay (days)')\n", |
|
|
783 |
"ax2.set_ylabel('Risk')\n", |
|
|
784 |
"\n", |
|
|
785 |
"fig.gca().xaxis.set_major_formatter(FuncFormatter(abs_var))\n", |
|
|
786 |
"\n", |
|
|
787 |
"# case 2\n", |
|
|
788 |
"los_status, out, outcome_status, risk = inference_case(169)\n", |
|
|
789 |
"los_status = np.negative(los_status)\n", |
|
|
790 |
"\n", |
|
|
791 |
"bx2 = bx.twinx()\n", |
|
|
792 |
"bx.plot(los_status, out, marker='o', linewidth=1, label='Dead case', color='red')\n", |
|
|
793 |
"bx2.plot(los_status, risk, marker=',', linewidth=2, color='skyblue')\n", |
|
|
794 |
"bx.set_ylim([0, 22])\n", |
|
|
795 |
"bx2.set_ylim([0, 1])\n", |
|
|
796 |
"bx2.grid(False)\n", |
|
|
797 |
"bx.plot([0, -22], [0, 22], linestyle='-.', color='grey')\n", |
|
|
798 |
"bx.set_xlabel('True Length of Stay (days)')\n", |
|
|
799 |
"bx.set_ylabel('Predicted Length of Stay (days)')\n", |
|
|
800 |
"bx2.set_ylabel('Risk')\n", |
|
|
801 |
"\n", |
|
|
802 |
"fig.gca().xaxis.set_major_formatter(FuncFormatter(abs_var))\n", |
|
|
803 |
"\n", |
|
|
804 |
"fig.legend(bbox_to_anchor=(0.5, 1.05), loc=\"upper center\", ncol=3)\n", |
|
|
805 |
"fig.tight_layout()\n", |
|
|
806 |
"plt.savefig('cases/cdsl_case_study.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")\n", |
|
|
807 |
"plt.show()" |
|
|
808 |
] |
|
|
809 |
}, |
|
|
810 |
{ |
|
|
811 |
"cell_type": "code", |
|
|
812 |
"execution_count": null, |
|
|
813 |
"metadata": {}, |
|
|
814 |
"outputs": [], |
|
|
815 |
"source": [ |
|
|
816 |
"# for idx in long_visits_id_list:\n", |
|
|
817 |
"# los_status, out, outcome_status, risk = inference_case(idx)\n", |
|
|
818 |
"# plot_case(los_status, out, outcome_status, risk, idx)" |
|
|
819 |
] |
|
|
820 |
}, |
|
|
821 |
{ |
|
|
822 |
"cell_type": "markdown", |
|
|
823 |
"metadata": {}, |
|
|
824 |
"source": [ |
|
|
825 |
"### TJH dataset" |
|
|
826 |
] |
|
|
827 |
}, |
|
|
828 |
{ |
|
|
829 |
"cell_type": "code", |
|
|
830 |
"execution_count": null, |
|
|
831 |
"metadata": {}, |
|
|
832 |
"outputs": [], |
|
|
833 |
"source": [ |
|
|
834 |
"val_idx = [287, 116, 186, 292, 225, 290, 277, 311, 20, 71, 52, 304, 87, 74, 318, 92, 121, 236, 226, 149, 295, 103, 14, 305, 213, 165, 174, 106, 99, 102, 151, 177, 233, 130, 1, 270]" |
|
|
835 |
] |
|
|
836 |
}, |
|
|
837 |
{ |
|
|
838 |
"cell_type": "code", |
|
|
839 |
"execution_count": null, |
|
|
840 |
"metadata": {}, |
|
|
841 |
"outputs": [], |
|
|
842 |
"source": [ |
|
|
843 |
"x = pd.read_pickle(\"datasets/tongji/processed_data/x.pkl\")\n", |
|
|
844 |
"y = pd.read_pickle(\"datasets/tongji/processed_data/y.pkl\")\n", |
|
|
845 |
"visits_length = pd.read_pickle(\"datasets/tongji/processed_data/visits_length.pkl\")\n", |
|
|
846 |
"x = x[val_idx]\n", |
|
|
847 |
"y = y[val_idx]\n", |
|
|
848 |
"visits_length = visits_length[val_idx]\n", |
|
|
849 |
"device = torch.device(\"cpu\")" |
|
|
850 |
] |
|
|
851 |
}, |
|
|
852 |
{ |
|
|
853 |
"cell_type": "code", |
|
|
854 |
"execution_count": null, |
|
|
855 |
"metadata": {}, |
|
|
856 |
"outputs": [], |
|
|
857 |
"source": [ |
|
|
858 |
"long_visits_id_list = []\n", |
|
|
859 |
"\n", |
|
|
860 |
"for i in range(len(visits_length)):\n", |
|
|
861 |
" if visits_length[i] > 5:\n", |
|
|
862 |
" long_visits_id_list.append(i)\n", |
|
|
863 |
" print(f\"[{i}: {y[i][0][0].item()}] len:{visits_length[i]}\", end=\" \")" |
|
|
864 |
] |
|
|
865 |
}, |
|
|
866 |
{ |
|
|
867 |
"cell_type": "markdown", |
|
|
868 |
"metadata": {}, |
|
|
869 |
"source": [ |
|
|
870 |
"#### RETAIN multitask" |
|
|
871 |
] |
|
|
872 |
}, |
|
|
873 |
{ |
|
|
874 |
"cell_type": "code", |
|
|
875 |
"execution_count": null, |
|
|
876 |
"metadata": {}, |
|
|
877 |
"outputs": [], |
|
|
878 |
"source": [ |
|
|
879 |
"hidden_dim=64\n", |
|
|
880 |
"backbone = models.RETAIN(\n", |
|
|
881 |
" input_dim=75,\n", |
|
|
882 |
" hidden_dim=hidden_dim,\n", |
|
|
883 |
" dropout=0.0,\n", |
|
|
884 |
")\n", |
|
|
885 |
"head = models.MultitaskHead(\n", |
|
|
886 |
" hidden_dim=hidden_dim,\n", |
|
|
887 |
" output_dim=1,\n", |
|
|
888 |
")\n", |
|
|
889 |
"model = models.Model(backbone, head)\n", |
|
|
890 |
"los_ckpt = torch.load(\"./checkpoints/tj_multitask_retain_ep100_kf10_bs64_hid64_1_seed42.pth\", map_location=torch.device('cpu'))\n", |
|
|
891 |
"model.load_state_dict(los_ckpt)\n", |
|
|
892 |
"\n", |
|
|
893 |
"def inference_case(idx):\n", |
|
|
894 |
" outcome_status=y[idx][0][0]\n", |
|
|
895 |
" los_status=y[idx][:visits_length[idx]][:,1]\n", |
|
|
896 |
" patient=x[idx][:visits_length[idx]]\n", |
|
|
897 |
"\n", |
|
|
898 |
" outcome_status = outcome_status.unsqueeze(-1)\n", |
|
|
899 |
" patient = patient.float()\n", |
|
|
900 |
"\n", |
|
|
901 |
" patient = torch.stack((patient, patient), dim=0)\n", |
|
|
902 |
" risk, out = model(patient, device, None)\n", |
|
|
903 |
" out = out[0]\n", |
|
|
904 |
" risk = risk[0]\n", |
|
|
905 |
" los_statistics = {'los_mean': 7.7147756, 'los_std': 7.1851807}\n", |
|
|
906 |
" out = torch.squeeze(out)\n", |
|
|
907 |
" risk = torch.squeeze(risk)\n", |
|
|
908 |
" out = out * los_statistics['los_std'] + los_statistics['los_mean']\n", |
|
|
909 |
" # print(\"los gt:\", los_status)\n", |
|
|
910 |
" # print(\"los pred:\", out)\n", |
|
|
911 |
" # print(\"outcome:\", outcome_status)\n", |
|
|
912 |
" # print(\"risk pred:\", risk)\n", |
|
|
913 |
" # print(\"--------------------\")\n", |
|
|
914 |
" return los_status.cpu().detach().numpy(), out.cpu().detach().numpy(), outcome_status.cpu().detach().numpy(), risk.cpu().detach().numpy()\n", |
|
|
915 |
"\n", |
|
|
916 |
"\n", |
|
|
917 |
"los_status, out, outcome_status, risk = inference_case(30)\n", |
|
|
918 |
"los_status, out, outcome_status, risk" |
|
|
919 |
] |
|
|
920 |
}, |
|
|
921 |
{ |
|
|
922 |
"cell_type": "code", |
|
|
923 |
"execution_count": null, |
|
|
924 |
"metadata": {}, |
|
|
925 |
"outputs": [], |
|
|
926 |
"source": [ |
|
|
927 |
"def plot_case(los_status, out, outcome_status, risk, idx):\n", |
|
|
928 |
" color = 'green' if outcome_status == 0 else 'red'\n", |
|
|
929 |
" label_info = f'Alive Case #{idx}' if outcome_status == 0 else f'Dead Case #{idx}'\n", |
|
|
930 |
" filename = f'case_study_los_alive_{idx}' if outcome_status == 0 else f'case_study_los_dead_{idx}'\n", |
|
|
931 |
" los_status = np.negative(los_status)\n", |
|
|
932 |
" fig = plt.figure()\n", |
|
|
933 |
" ax = fig.add_subplot(111)\n", |
|
|
934 |
" ax2 = ax.twinx()\n", |
|
|
935 |
" ax.plot(los_status, out, marker='o', linewidth=1, label=label_info, color=color)\n", |
|
|
936 |
" ax2.plot(los_status, risk, marker=',', linewidth=1, label='Risk', color='skyblue')\n", |
|
|
937 |
" ax.set_ylim([0, 30])\n", |
|
|
938 |
" ax2.set_ylim([0, 1])\n", |
|
|
939 |
" ax2.grid(False)\n", |
|
|
940 |
" ax.plot([0, -30], [0, 30], linestyle='-.', color='grey')\n", |
|
|
941 |
" ax.set_xlabel('True Length of Stay (days)')\n", |
|
|
942 |
" ax.set_ylabel('Predicted Length of Stay (days)')\n", |
|
|
943 |
" ax.legend(loc='upper left')\n", |
|
|
944 |
" ax2.legend(loc='lower left')\n", |
|
|
945 |
"\n", |
|
|
946 |
" # plt.savefig(f'case_study_los_{idx}.pdf', dpi=500, format=\"pdf\", bbox_inches=\"tight\")\n", |
|
|
947 |
" plt.savefig(f'cases/tjh/{filename}.png', format=\"png\", bbox_inches=\"tight\")\n", |
|
|
948 |
" plt.show()\n" |
|
|
949 |
] |
|
|
950 |
}, |
|
|
951 |
{ |
|
|
952 |
"cell_type": "code", |
|
|
953 |
"execution_count": null, |
|
|
954 |
"metadata": {}, |
|
|
955 |
"outputs": [], |
|
|
956 |
"source": [ |
|
|
957 |
"# for idx in long_visits_id_list:\n", |
|
|
958 |
"# los_status, out, outcome_status, risk = inference_case(idx)\n", |
|
|
959 |
"# plot_case(los_status, out, outcome_status, risk, idx)" |
|
|
960 |
] |
|
|
961 |
} |
|
|
962 |
], |
|
|
963 |
"metadata": { |
|
|
964 |
"kernelspec": { |
|
|
965 |
"display_name": "Python 3.9.5 ('pytorch')", |
|
|
966 |
"language": "python", |
|
|
967 |
"name": "python3" |
|
|
968 |
}, |
|
|
969 |
"language_info": { |
|
|
970 |
"codemirror_mode": { |
|
|
971 |
"name": "ipython", |
|
|
972 |
"version": 3 |
|
|
973 |
}, |
|
|
974 |
"file_extension": ".py", |
|
|
975 |
"mimetype": "text/x-python", |
|
|
976 |
"name": "python", |
|
|
977 |
"nbconvert_exporter": "python", |
|
|
978 |
"pygments_lexer": "ipython3", |
|
|
979 |
"version": "3.9.5" |
|
|
980 |
}, |
|
|
981 |
"orig_nbformat": 4, |
|
|
982 |
"vscode": { |
|
|
983 |
"interpreter": { |
|
|
984 |
"hash": "e382889b16d65b8f9d2caeea05d88db6d501b8794eac9af8ee0956d5affe33e5" |
|
|
985 |
} |
|
|
986 |
} |
|
|
987 |
}, |
|
|
988 |
"nbformat": 4, |
|
|
989 |
"nbformat_minor": 2 |
|
|
990 |
} |